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Learning Objectives

n Introduction to JavaScript Object Notation 
(JSON)

n Look at JSON as an alternative technology for 
storage and transportation of data on the Web

n Look at some example code to parse and 
process JSON within the Node.js environment
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n In the context of this unit:
n We look at JSON as an important alternative Internet 

technology to use as solutions in different areas
n A major part of developing a JSON solution is to 

design and implement software to deal with the 
information in JSON formatted documents (JSON 
applications)

n Node.js, like JSON, uses JavaScript programming 
language, so there is a seamless integration

Learning Objectives
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Introduction

n JSON is a lightweight, text-based open standard 
designed for human-readable data interchange

n JSON is used primarily to store and transmit 
data between a server and web applications
n We have seen in the last three Topics that XML also 

provides a way of storing and transmitting such data
n JSON provides an alternative storage format to XML, 

which is much more convenient to work with both at 
a document level and in terms of parsing and 
processing
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§ Although originally derived from the JavaScript 
language, JSON is a language-independent 
data format

§ Software for parsing and generating JSON data 
is readily available in a large variety of 
programming languages
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§ The JSON format was originally specified by 
Douglas Crockford

§ It is currently described by two competing 
standards
§ The ECMA-404 standard is minimal, describing only 

the allowed grammar syntax
§ The RFC 7159 provides some semantic and 

security considerations, in addition to the allowed 
grammar syntax
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§ JSON stands for JavaScript Object Notation
§ It was designed for human-readable data 

interchange
§ It has been extended from the JavaScript scripting 

language
§ Its filename extension is .json
§ The official JSON Internet Media type is 

application/json
§ The Uniform Type Identifier is public.json
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n JSON can be used:
§ When writing JavaScript based applications 

including browser extensions and websites
§ For serializing and transmitting structured data (in 

JSON format) over network connections
§ Primarily to transmit data between web server 

applications and web clients
§ For Web Services and API's to provide public data 

(in JSON format)
§ With other modern programming languages
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n Characteristics of JSON:
n It is easy to read and write
n It is a lightweight text-based interchange format
n It is language independent
n It uses the JavaScript object literal notation to define 

JSON objects
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Example: HTML Usage

<html>
<head>

<title>JSON Example</title>
<script type="text/javascript" src="book.js">
</script>

</head>
<body>

<script type="text/javascript">
displayJSON();

</script>
</body>

</html>
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Example: HTML Usage

function displayJSON() {
var object1 = { "bookname": "Papillon",

"author": "Henri Charriere" };
document.write("<h1>JSON with JavaScript example</h1>");
document.write("<br>");
document.write("<h3>Bookname = "+ object1.bookname+"</h3>");
document.write("<h3>Author = "+ object1.author+"</h3>");
var object2 = { "bookname": "One Flew Over the Cuckoo’s Nest", 

"author": "Ken Kesey" };
document.write("<br>");
document.write("<h3>Bookname = "+ object2.bookname +"</h3>");
document.write("<h3>Author = "+ object2.author+"</h3>");
document.write("<hr />");
document.write(object2.bookname + ", written by " + 

object2.author + " can play with your mind!@#");
document.write("<hr />");

}
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Example: Browser Output

JSON with JavaScript example

Bookname = Papillon
Author = Henri Charriere

Bookname = One Flew Over The Cuckoo’s Nest
Author = Ken Kesey

One Flew Over The Cuckoo’s Nest, written by Ken Kesey, 
can play with your mind!@#
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n JSON syntax is a subset of JavaScript syntax, 
and includes the following:
n Curly braces designate objects (using the object 

literal notation)
n Data is represented in property:value pairs
n Each property (key) is followed by a colon (':’)
n Each property:value pair is separated by a 

comma (',') except for the last pair
n Square brackets designate arrays, where elements 

are separated by a comma  (',')
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Example: JSON Object

{
"book": [
{

"id": "01",
"bookname": "Papillon",
"edition": "first",
"author": "Henri Charriere"

},
{

"id": "02",
"bookname": "One Flew Over the Cuckoo’s Nest",
"edition": "second",
"author": "Ken Kesey"

}]
}

14

Hong Xie

Hong Xie

Hong Xie

Hong Xie



15

Example: Things To Note

n The JSON object is defined within braces (i.e. 
curly brackets '{' '}’), using object literal notation

n The name of the object is "book"
n This is immediately followed by a colon (':')
n The components of the object are defined in an 

array, designated by square brackets '[' ']'
n Each array element is an JSON object separated 

by a comma (',’)
n Again, each JSON object in the array is defined using 

the object literal notation



16

Example: Things To Note

n The properties that describe a 'book' object are 
id, bookname, edition, and author

n Each property is enclosed in double quotes and 
is immediately by the colon (':')

n Each property has a value
n String values are enclosed in double quote
n Numeric, Boolean, and null values are not

n Each property:value pair (except for the last 
one) is separated by a comma (',')
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JSON Data Structures

n Formally, JSON supports the following two data 
structures:
1. Collection of property:value pairs (this Data 

Structure is supported by different programming 
languages)

2. Ordered list of values (including array, list, vector or 
sequence, etc.)
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JSON Data Types

Hong Xie



19

n The Number data type:
n Double-precision floating-point format as in 

JavaScript and depends on implementation
n Octal and hexadecimal formats are not used
n No NaN or Infinity is used in Number

JSON Data Types: Number
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§ Formal syntax:

var json-object = { string: number_value, ... }

§ Example (note that because the value is a 
number, it is not quoted):

var obj = { "marks": 97 }

JSON Data Types: Number
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JSON Data Types: String

n The String data type:
n A sequence of zero or more double quoted Unicode 

characters, with possible backslash escaping
n Character is a single character string; i.e. a string 

with length 1

n Formal syntax:
var json-object = { string: "string value", ... }

n Example:
var obj = { "name" : "John" }
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String Escape Characters
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n The Boolean data type:
n Only includes true or false values

n Formal syntax:
var json-object = { string: true/false, ... }

n Example (note boolean value not quoted):
var obj = { "name": "Arnold",

"distinction": true }

JSON Data Types: Boolean
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n The Object data type:
n An unordered set of property:value pairs
n These pairs are enclosed in braces (curly brackets), 

which means they begin with '{' and end with '}'
n Each property is followed by a colon (':') and the 
property:value pairs are comma separated (',')

n The properties must be strings and should be 
different from each other

n Objects should be used when the property names 
are arbitrary strings

JSON Data Types: Object
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n Formal syntax:
{ string : value, ... }

n Example:
{

"id": "011A",
"language": "JAVA",
"price": 500

}

JSON Data Types: Object
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n The Array data type:
n An ordered collection of elements (typically objects 

or property:value pairs)
n Arrays are designated by square brackets which 

means they begin with '[' and end with ']' and 
enclose a list of objects

n Array elements are comma separated (',')
n Array indexing can be started at 0 or 1
n Arrays should be used when the properties are 

sequential integers

JSON Data Types: Array

Hong Xie

Hong Xie

Hong Xie

Hong Xie



27

n Formal syntax:
[ value, ... ]

n Example (N.B. array values are objects):
{

"book": [
{ "language": "Java", "edition": "third" },
{ "language": "C++", "edition": "fifth" },
{ "language": "Python", "edition": "second" }

]
}

JSON Data Types: Array
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n The Whitespace data type:
n Can be inserted between any pair of tokens
n Can be added to make code more readable

n Example (declaration with and without 
whitespace):

{
"book": [

{ "language": "Java", "edition": "third" },
{"language":"C++","edition":"fifth"},

]
}

JSON Data Types: Whitespace

Hong Xie

Hong Xie

Hong Xie



29

n The null data type (empty type)
n Formal syntax:
null

§ Example:
var i = null;
if(i == null) {

document.write("<h1>value is null</h1>");
}else{

document.write("<h1>value is not null</h1>");
}

JSON Data Types: null
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JSON Values

n A JSON value can include:
§ number (integer or floating point)
§ string
§ boolean
§ array
§ object
§ null
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JSON Values

n Syntax:
String | Number | Object | Array |
TRUE | FALSE | NULL

§ Example:
{

"Number" : 1,
"String" : "sachin", 
"null" : null, 
"True" : true 

}
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n Objects can be created as an empty Object 
(using the object literal notation):
var JSONObj = {};

n Property:value pairs can be added using the 
dot notation '.'. Eg:
JSONObj.objname = "table";

Creating Simple JSON Objects
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n OR an Object with properties (using the object 
literal notation):
var JSONObj = { "bookname": "BLACK BOOK", 

"price": 500 };

n Property bookname with a string value, property 
price with a numeric value

n Properties can be accessed by using dot notation '.'.

Creating Simple JSON Objects
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n OR using the Object constructor:

var JSONObj = new Object();

n Property:value pairs can be added using the 
dot notation '.'.

n Eg:

JSONObj.objage = 2001;

Creating Simple JSON Objects
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<html>
<head>

<title>Creating Object with JavaScript</title>
<script language="javascript" >

var JSONObj = { "name": "Fred","year": 2005 };
document.write("JSON / JavaScript Example");
document.write("<br>");
document.write("Name=" + JSONObj.name);
document.write("Year=" + JSONObj.year);

</script>
</head>
<body>
</body>

</html>

JSON Object Example: HTML
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JSON / JavaScript Example

Name=Fred

Year=2005

Object Example: Browser Output
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n Creating an array of objects in JavaScript using 
JSON:
<html>

<head>
<title>Creation of an array of objects in 

JavaScript using JSON</title>
<script language="javascript" >

document.writeln("JSON array object");

JSON Array Example: HTML
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var books = { "Pascal" : [
{ "Name": "Pascal Made Simple", 

"price": 700 },
{ "Name": "Guide to Pascal",

"price": 400 }
],
"Scala": [
{ "Name": "Scala for the Impatient", 

"price": 1000 },
{ "Name": "Scala in Depth",    

"price": 1300 }
]

}

JSON Array Example: HTML
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var i = 0;
document.writeln("<table border='2'<tr>");
for(i=0;i<books.Pascal.length;i++) {

document.writeln("<td>");
document.writeln("<table border='1' 

width=100 >");
document.writeln("<tr><td><b>Name</b> 

</td><td width=50>" +
books.Pascal[i].Name+"</td></tr>");

document.writeln("<tr><td><b>Price</b> 
</td><td width=50>" +

books.Pascal[i].price+"</td></tr>");
document.writeln("</table>");
document.writeln("</td>");

}

JSON Array Example: HTML
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for(i=0;i<books.Scala.length;i++) {
document.writeln("<td>");
document.writeln("<table border='1' 

width=100 >");
document.writeln("<tr><td><b>Name</b> 

</td><td width=50>" +
books.Scala[i].Name+"</td></tr>");

document.writeln("<tr><td><b>Price</b> 
</td><td width=50>" +

books.Scala[i].price+"</td></tr>");
document.writeln("</table>");
document.writeln("</td>");

}
document.writeln("</tr></table>");

</script>
</head><body></body></html>

JSON Array Example: HTML
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§ JSON array object

Array Example: Browser Output
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n Node.js has emerged as a leading platform for 
creating fully scalable applications within the 
least amount of time

n Additionally, the platform is constantly upgraded 
to allow developers to continue delivering 
applications for their clients

n Unlike the case of XML, choosing JSON files for 
storing, retrieving, and transmitting data is a 
convenient option

JSON in Node.js
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n The reason for this is that the JSON files are 
simpler to work with (using dot notation to 
access data and arrays to store and process 
multiple objects)
n They are also less cluttered and easy-to-read

n Also, as JSON and Node.js are JavaScript 
based, collaborating JSON files with Node.js 
ensures that the information can be simply 
accessed for processing

JSON in Node.js
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n Step 1:
n Create a dummy JSON file:
{

"username": "xyz",
"password": "xyz@^123",
"email": "xyz@xyz.com",
"uid": 1100

}

n Save the above JSON file as dummy.json

Handling JSON Files in Node.js
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n Step 2:
n Decide whether you want the synchronous or 

asynchronous method for reading the JSON file
n Synchronous methods of reading a JSON file 

basically refers to one-way execution, wherein there 
is a single flow which executes the JSON file line by 
line

n The control flow will move to the next statement only 
after the current statement has completed

Handling JSON Files in Node.js
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n Step 2:
n Asynchronous flow-control will move to the next line 

regardless of whether the current statement has 
completed, and possibly display information about 
the asynchronous statement’s completion

n Synchronous methods may be referred to as 
blocking methods, and asynchronous methods may 
be referred to as non-blocking methods

Handling JSON Files in Node.js
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n Step 3:
n Depending on your selection of the method for 

reading the JSON file (asynchronous or 
synchronous), the outputs would vary

n The examples on the next few slides demonstrate how 
to access (parse) data stored in a JSON object

n Both asynchronous and synchronous methods are 
considered

Handling JSON Files in Node.js
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JSON Example: Node.js

§ Save the following code in a file book.json
{

"book": [
{

"id": "01",
"bookname": "Papillon",
"edition": "first",
"author": "Henri Charriere"

},
{

"id": "02",
"bookname": "One Flew Over the Cuckoo's Nest",
"edition": "second",
"author": "Ken Kesey"

}]
}
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n Create JavaScript file testBookfss.js:

// Synchronous version using fs and JSON.parse
var fs = require('fs');
var obj = JSON.parse(

fs.readFileSync('./book.json', 'utf-8’)
);

// obj contains the JavaScript object for the json file

// here, we just display it

console.log(obj);

JSON Example: Synchronous fs
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n Create JavaScript file testBookfsa.js:
var fs = require('fs');

var obj;

fs.readFile('./book.json', 'utf-8', function(error, data) {

if (error) throw error; // skip handling for now

obj = JSON.parse(data);

console.log(obj);

});

// as fs.readFile is asynchronous, the following 

// statement may well be executed before the parsed

// result is displayed

console.log("The next statement after asynchronous read);

JSON Example: Asynchronous fs
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§ Provided book.json is in the same directory 
as your scripts, execute using node on 
command line:
node testBookfss.js

§ But if you run the following command:
node testBookfsa.js

You will notice that the asynchronous read 
hasn't finished when the next statement is 
executed.

JSON Example: Node.js
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n Install jsonfile module with npm
n Create JavaScript file testBookjfs.js:

// Synchronous version using jsonfile
var jf = require('jsonfile');
var obj = jf.readFileSync('./book.json');
// obj contains the JavaScript object for the JSON data 
// here, we just display it

console.log(obj);

JSON Example: Synchronous 
jsonfile
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n Create JavaScript file testBookjfa.js:
// Asynchronous version using jsonfile
var jf = require('jsonfile');

js.readFile('./book.json', function(error, obj) {

if (error) throw error; // skip handling for now
// obj contains the JavaScript object for the

// JSON data – can now process it.

// here, we just display it

console.log(obj);

});

console.log("The next statement after asynchronous read");

JSON Example: Asynchronous 
jsonfile
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n JSON and XML are both human-readable 
formats and language independent

n They both have support for creating, reading 
and decoding data in real world situations

n We can compare JSON with XML based on the 
following factors:

JSON Compared With XML
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n Verbose
n XML is more verbose than JSON, so it is faster for humans 

to read and write JSON
n Arrays Usage

n XML is used to describe structured data which does not 
include arrays, whereas JSON does include arrays to help 
define its objects

n Parsing
n JavaScript's eval method parses JSON
n When applied to JSON, eval returns the described object

JSON Compared With XML
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n Syntactically:
n JSON
{

"company": "Volkswagen",
"name": "Vento",
"price": 800000

}

§ XML
<car>

<company>Volkswagen</company>
<name>Vento</name>
<price>800000</price>

</car>

JSON Compared With XML
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n As we have seen in the lectures on XML, the 
development of applications to parse and 
process XML documents requires an advanced 
skill set because processing is not straight 
forward

n With JSON, parsing and processing is more 
straight forward because JSON format is more 
human-readable, and access to data is achieved 
using the dot notation and array subscripts

JSON Compared With XML
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n As JSON is the preferred format for transmitting 
data around the Web, yet there is still much 
legacy data stored in XML, there needs to be a 
way to retrieve XML data and simply parse the 
data to JSON

n There are a number of XML to JSON parsers 
available
n By far the most common use SAX (eg: xml2js, 

xml2json, and xmldoc); fewer examples use 
DOM (eg: xml-objtree and libxmljs-dom)

Parsing XML To JSON
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n Firstly, a DOM example (install library):
n npm install xml-objtree

var ObjTree = require('xml-objtree');  
var objTree = new ObjTree();  
var xml = [  
'<?xml version="1.0" encoding="UTF-8"?>',  
'<book>',

'<name>Papillion</name>',
'<edition>first</edition>',
'<author>Henri Charriere</author>',

'</book>'
].join('\n');  
var obj = objTree.parseXML(xml);  
console.log(JSON.stringify(obj));

Parsing XML To JSON: DOM
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n We will concentrate on the simple SAX parser
n npm install xml2js

var fs = require('fs'), // File System Module
var xml2js = require('xml2js'); // XML2JS Module
var parser = new xml2js.Parser(); // Create parser object

// Asynchronously read and parse the file 
fs.readFile('./test.xml', function(error, data){

if (error) throw error; // skip handling for now
parser.parseString(data, function (err, result){

if (err) throw err;
console.log(result);

});
});

Parsing XML To JSON: SAX
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n Another example:
var fs = require('fs'), // File System Module
var xml2js = require('xml2js'); // XML2JS Module
var inputFile = "books.xml"; // XML file
var parser = new xml2js.Parser(); // Create parser object

// Synchronously read
var xmlData = fs.readFileSync(inputFile, 'utf8');

// Parse the file
parser.parseString(xmlData, function(error, result){

if (error) throw error;
var s = JSON.stringify(result);
console.log( "Result" + "\n", s, "\n" );

});

Parsing XML To JSON: SAX
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§ When XML elements contain attributes, the 
previous code version creates an attribute object 
named $ on the parent, then assigns the values 
as children of the attribute object

§ To place attributes as direct children of the 
parent object (without the intervening $ object), 
we can set the mergeAttrs option to true when 
declaring the parser:
var parser = new xml2js.Parser(

{ mergeAttrs: true }
);

Parsing XML To JSON: SAX
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§ The module xml-to-json-promise is a promise-
supported wrapper around the xml2js library
§ This module makes it easy to convert XML data and 

files to the JSON format
§ To install:

§ npm install xml-to-json-promise

Parsing XML To JSON: SAX
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§ To convert raw XML data to JSON, we can use 
the function:
xmlDataToJSON(xml, [options])

§ The function requires the xml (as a string), and 
the optional options are the xml2js options you 
want to use when parsing to JSON

§ The function returns a promise with the json
data

Parsing XML To JSON: SAX
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convert = require('xml-to-json-promise');

// convert an xml file to json
convert.xmlFileToJSON('xmlfile.xml').then(json => {

console.log(json);
});

// convert raw xml data to json
convert.xmlDataToJSON('<book>Help</book>').then(json => {

console.log(json);
});

Parsing XML To JSON: SAX
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§ Here is an example for saving your XML file to a 
JSON file using xml-to-json-promise

var convert = require('xml-to-json-promise');
var fs = require('fs');

convert.xmlFileToJSON('xmlfile.xml').then( json => {
fs.writeFile('file.json', JSON.stringify(json), 

error => {
if (error) { throw error };
console.log('file saved!');

});
});

Parsing XML To JSON:
SAVE TO JSON FILE
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n AJAX is Asynchronous JavaScript and XML
n It is used on the client side as a group of inter-

related web development techniques in order to 
create asynchronous Web applications

n Using the AJAX model, Web applications can 
asynchronously send and retrieve data from a 
server without interfering with the display or 
behaviour of an existing page

JSON With AJAX
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n Many developers use JSON to pass AJAX 
updates between client and server

n A note in relation to terminology:
n AJAX = Asynchronous JavaScript and XML
n AJAJ = Asynchronous JavaScript and JSON
n Because AJAX was well established prior to the 

adoption of AJAJ, and AJAJ (as an acronym) is a bit 
awkward to pronounce, the term AJAX is commonly 
used to refer to AJAJ

JSON With AJAX
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n Websites updating live sports scores can be 
considered examples of AJAX usage

n If these scores have to be updated on the 
website, then they must be stored on the server 
so that the webpage can retrieve the score when 
it is required

n This is where we can more easily make use of 
JSON formatted data, rather than XML formatted 
data

JSON With AJAX
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n Any data that is updated using AJAX can be 
stored using JSON format on a web server

n AJAX is used so JavaScript can retrieve JSON 
files when necessary, parse them, and then 
perform one of the following two tasks:
n Store parsed values in variables for processing 

before displaying them on the webpage
n Directly assign data to DOM elements in the 

webpage, so that it gets displayed on the website

JSON With AJAX
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var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange = function() {

if (this.readyState == 4 && this.status == 200){
var myObj=JSON.parse(this.responseText);
document.getElementById("demo").innerHTML 

= myObj.name;
}

};
xmlhttp.open("GET", "json_demo.txt", true);
xmlhttp.send();

Example: JSON With AJAX
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n There is example code on ceto (in this weeks 
tutorial) in the file: jsonajax.html

n It provides another demonstration of JSON 
with AJAX

n You should attempt to understand the code:
n As you have done AJAX in the pre-requisite unit 

ICT286, you should be able to get a feel for it
n Hint: loading the function loadJSON() is used 

asynchronously to upload JSON data
n It has a link to a data file data.json on the 

tutorialspoint website

JSON With AJAX
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Research Future
n Note: we have only given a brief coverage of the 

fundamentals of JSON in this lecture
n We will cover JSON Schema in the next set of 

slides
n Recall from the Unit Objectives in week 1, that 

this unit will require you to research 
independently to discover how to utilize 
technologies that we cover briefly: JSON 
processing is one such instance (in particular, 
parsing XML to JSON can be handy!)
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Learning Objectives

n Fundamentals of JavaScript Schema
n Look at how JSON Schema can be used to 

validate the structure and data types of JSON 
documents



JSON Schema

n JSON Schema is:
n A specification for the JSON-based format for 

defining structure of JSON data
n Written in JSON
n Not a computer program, but data in a declarative 

format for “describing the structure of other data”
n Written under Internet Engineering Task Force 

(IETF). Draft 2020-12 was published on 1 February 
2021.

3



JSON Schema

n JSON Schema:
n Describes your existing JSON data format
n Provides clear, human-readable, and machine-

readable documentation
n Provides complete structural validation for

n Automated testing

n Validating client-submitted data

4



§ There are several validators currently available 
for different programming languages

§ Currently the most complete and compliant 
JSON Schema validator available is JSV

5

JSON Schema Validation Libraries
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JSON Schema Validation Libraries



n The table on the next slide outlines the 
"keywords" that are available for validation of 
a JSON file based on a schema
n When you see an example, you will notice that the 

keywords are in fact object properties

n A complete list of keywords, which can be used 
in defining JSON schema, is available at:
n http://json-schema.org

7

JSON Schema Keywords
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§ A basic JSON Schema defining a product 
catalogue description:
{

"$schema": "http://json-schema.org/draft-07/schema#",
"title": "Product",
"description": "Product catalogue",
"type": "object",
"properties": {

"id": {
"description": "Product identifier",
"type": "integer"

},

9

JSON Schema Example



"name": {
"description": "Name of the product",
"type": "string"

},
"price": {

"type": "number",
"minimum": 0,
"exclusiveMinimum": true

}
},
"required": ["id", "name", "price"]

}

10

JSON Schema Example



Validating With Our Schema

§ This JSON can be validated via our schema:
[

{
"id": 2,
"name": "An ice sculpture",
"price": 12.50

},
{

"id": 3,
"name": "A blue mouse",
"price": 25.50

}
]

11



type Keyword

§ The type keyword is the most common in a 
JSON Schema, and is used to restrict values 
to a specific data type

§ The type keyword is used as follows:

{ "type": "string" }

§ Correct value: “short”
§ Incorrect value: 2 or { "name": "Kevin" } or true

12



§ The $schema keyword is used to declare that 
a JSON fragment is actually a piece of JSON 
Schema

§ It also declares which version of the JSON 
Schema standard that the schema was 
written to comply with

13

$schema Keyword



§ It is strongly recommended that all JSON 
Schema have a $schema entry, which must 
be at the root of the schema

§ The $schema keyword is used as follows:
"$schema": http://json-schema.org/schema#

§ The statement above declares that your 
schema was written to comply with the latest 
version of the JSON Schema standard

14

$schema Keyword



§ You can declare that your schema was written 
to comply with a specific version of the JSON 
Schema standard, by using one of the 
following pre-defined values:
§ JSON Schema written to comply with the current 

version of the specification
§ http://json-schema.org/schema#

15

$schema Keyword



§ JSON Schema written to comply with this version 
(i.e. the schema being described in the current 
document)
§ http://json-schema.org/draft-07/schema#

16

$schema Keyword



§ If you have extended the JSON Schema 
language to include your own custom 
keywords for validating values, you can use a 
custom URI for $schema

§ However, it must not be one of the pre-
defined examples seen above

17

$schema Keyword



n Combining schema may be as simple as 
allowing a value to be validated against multiple 
criteria at the same time OR combining 
schemas from multiple files or JSON trees

n JSON Schema includes four keywords for 
combining schema:
n allOf
n anyOf
n one of
n not

18

Combining Schema



§ allOf must be valid against all of the sub-
schema (analogous to AND; the schema is true 
if and only if all sub-schema are true)
{

"allOf": [
{ "type": "string" },
{ "maxLength": 5 }

]
}

§ Correct value: “short”
§ Incorrect value: “too long”

19

Combining Schema: allOf



§ In the previous example, the first sub-schema 
requires a string and the second sub-schema 
requires that the string be a maximum of 5 
characters in length

§ As long as a value validates against both of 
these sub-schema, it is considered valid against 
the combined schema

20

Combining Schema: allOf



§ Be careful not to create schema that are 
logically impossible:
{

"allOf": [
{ "type": "string" },
{ "type": "number" }

]
}

§ This schema will not validate against any 
value, since a value can not be both a string 
and a number at the same time

21

Combining Schema: allOf



§ anyOf can be valid against any of the sub-
schema (analogous to OR; the schema is true if 
one or more sub-schema are true)
{

"anyOf": [
{ "type": "string", "maxLength": 5 },
{ "type": "number", "minimum": 0 }

]
}

§ Correct values: “short”, “hi”, 4, or 5
§ Incorrect values: “too long”, -1

22

Combining Schema: anyOf



§ In the previous example, the first sub-schema 
allows a string with maximum length 5 and the 
second sub-schema allows a number with a 
minimum value of 0

§ As long as a value validates against either of 
these sub-schema, it is considered valid 
against the combined schema
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Combining Schema: anyOf



{
"anyOf": [

{ "type": "string" },
{ "type": "number" }

]
}

§ Correct value: “short one”,  45
§ Incorrect value: { "name": "Kevin" }
§ This schema will validate against any string or 

any number, as either can be valid
§ It will not validate against an object

24

Combining Schema: anyOf
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§ oneOf must be valid against exactly one of 
the sub-schema
{

"oneOf": [
{ "type": "number", "multipleOf": 5 },
{ "type": "number", "multipleOf": 3 }

]
}

§ correct values: 10,  9
§ Incorrect value: 2 (not valid with either); 15 or 

90 (valid with both)

Combining Schema: oneOf
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n not must not be valid against the given 
schema
{

"not": { "type": "string" }
}

§ Correct values: { "key": "value" } or 15
§ Incorrect value: “a string”

Combining Schema: not
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n not does not strictly combine schema, but it 
belongs here because it modifies the effect of 
schema in some way

n The not keyword declares that a instance 
validates if it does not validate against the 
given sub-schema

Combining Schema: not
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n All of these keywords (except not) must be set 
to an array, where each item is a sub-schema

n It is important to note that the schema listed in 
an allOf, anyOf, or oneOf array know 
nothing of one another

Combining Schema
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n The pattern and Pattern Properties
keywords use regular expressions to express 
constraints

n The regular expression syntax used is from 
JavaScript (specifically ECMA 262)

n However, that complete syntax is not widely 
supported, therefore it is recommended that you 
stick to the subset of that syntax described on 
the next slide

Regular Expressions
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Regular Expressions
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n When writing computer programs of even 
moderate complexity, it is advisable to structure 
the design by making it modular
n This provides re-usable functionality, reduces 

duplication, and makes the program more portable 
for use by a wider audience

n In JSON Schema, for any but the most trivial 
schema, it is really useful to structure the 
schema into parts that can be re-used in a 
number of places

Structuring A Complex Schema
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§ Object to re-use:
{

"address": {
"type": "object",
"properties": {

"street_address": { "type": "string" },
"city": { "type": "string" },
"state": { "type": "string" }

},
"required": ["street_address", "city", "state"]

}
}

Structuring A Complex Schema
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§ Because we want to be able to re-use our 
schema, it is typical (but not required) to put it 
in a parent schema under a property called 
definitions:

Structuring A Complex Schema
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{
"definitions": {

"address": {
"type": "object",
"properties": {

"street_address": { "type": "string" },
"city": { "type": "string" },
"state": { "type": "string" }

},
"required": ["street_address","city","state"]

}
}

}

Structuring A Complex Schema
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§ The schema can then be referred to from 
elsewhere using the $ref keyword

§ The value of $ref is a string in a format called 
JSON Pointer
§ i.e. $ref is logically replaced with the object that it 

points to

§ To refer to our schema, we would include:
{ "$ref": "#/definitions/address" }

Structuring A Complex Schema
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§ The hash symbol (#) refers to the current 
document, and the forward slash (/) separates 
properties, allowing traversal of the 
properties in the document

§ In our example "#/definitions/address" 
means:
1. go to the root of the document
2. find the value of property "definitions"
3. within that object, find the value of the property 

"address"

Structuring A Complex Schema
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§ $ref can be a relative or absolute URI, so if 
you prefer to include your definitions in 
separate files, you can also do that

§ For example, below we load the address 
schema from another file 
definitions.json which resides in the 
same directory as the current one :
{ "$ref": "definitions.json#/address" }

Structuring A Complex Schema
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§ To create our address schema which allows a 
customer to create a valid JSON document:

{
"$schema": "http://json-schema.org/draft-07/schema#",
"definitions": {

"address": {
"type": "object",
"properties": {

"street_address": { "type": "string" },
"city": { "type": "string" },
"state": { "type": "string" }

},
"required": ["street_address", "city", "state"]

}
},

Structuring A Complex Schema
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"type": "object",
"properties": {

"bill_address": { "$ref": "#/definitions/address" },
"ship_address": { "$ref": "#/definitions/address" }

}
}

Structuring A Complex Schema
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n The JSON object below would be valid 
according to our schema:
{

"ship_address": {
"street_address": "16 Pennsylvania Avenue NW",
"city": "Washington",
"state": "DC"

},
"bill_address": {

"street_address": "1st Street SE",
"city": "Washington",
"state": "DC"

}
}

Structuring A Complex Schema
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n The id property serves two purposes:
1. It declares a unique identifier for the schema
2. It declares a base URL, against which $ref URLs 

can be resolved
§ It is best practice that id is a URL, preferably 

in a domain that you control
§ For example, if you own the foo.bar domain, and 

you had a schema for addresses, you may set its 
id as follows:

"id": "http://foo.bar/schemas/address.json"

JSON Schema: id Property



42

n This provides a unique identifier for the 
schema, as well as, in most cases, indicating 
where it may be downloaded

n But be aware of the second purpose of the id
property: "to declare a base URL for relative 
$ref URLs elsewhere in the file"

JSON Schema: id Property
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n For example, if you had:

{ "$ref": "person.json" }

in the same file, a JSON schema validation 
library would fetch person.json from 
http://foo.bar/schemas/person.json even if 
address.json was loaded from the local 
filesystem

JSON Schema: id Property
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2Lecture Objective/Outline

n Relevance to assessments:
n jQuery can provide very convenient usage client-

side, which may be beneficial for the assignment
n Why introduce jQuery for this unit?
n Introduction to the jQuery

n jQuery basic language features
n jQuery functions

n How to get up to speed with jQuery



3Introduction

n jQuery:
n Is a client-side JavaScript library released in 2006 

by John Resig
n Takes common tasks that require many lines of 

JavaScript code to accomplish, and wraps them 
into methods that you can call with a single line of 
code

n Also simplifies a lot of the complicated things from 
JavaScript, like AJAX calls and DOM manipulation



4Introduction

n jQuery library brings together the following set 
of functionalities:
n HTML/DOM navigation and manipulation
n CSS manipulation
n Event handling methods
n HTML effects and animations
n Developing with AJAX
n Other utilities
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§ The two simplest ways to start using jQuery on 
your web site are:
1. Download the jQuery library from jQuery.com

§ This will require downloading the latest updates 
when they are released

OR
2. Include jQuery from a Content Delivery Network 

(CDN), such as Google
§ The latter is the recommended usage, as the 

latest updates are always readily available

jQuery Usage
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n The following steps are required for the 
download option:
1. Download the latest jQuery from 

https://jquery.com/download/
n The jQuery library is a single JavaScript file called 

jQuery-(version).js
n Place the downloaded file in the same directory as the 

pages where you wish to use it
n You reference it with the HTML <script> tag (the 

<script> tag should be placed inside the <head>
section of your html page)

jQuery Download



7

2. Link to the downloaded .js file in the script tag 
with the src attribute
<script type="text/javascript" src="jquery-3.2.1.js">
</script>

n Note: the above script tag adds the function
jQuery() to the global namespace

n The most common usage of the function jQuery() is its 
alias $()

n In fact, the function jQuery() is rarely used or seen
3. Write your code

jQuery Download
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§ If you don't want to download and host jQuery 
yourself, the simplest and recommended 
method is to include a link to it from a Content 
Delivery Network (CDN), such as Google
§ The reference to the <script> tag should be 

inside the <head> tags
<head>
<script src="https://ajax.googleapis.com/
ajax/libs/jquery/3.2.1/jquery.min.js">

</script>
</head>

jQuery Content Delivery Network
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n The central concept behind jQuery is:
n “find something, do something”
n For example, select DOM elements from an HTML 

document and then do something with them using 
jQuery methods

jQuery: Concept
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<!DOCTYPE html>
<html lang="en">

<head>
<script src="…"> <!-- include src CDN address -->
</script>

</head>
<body>

<!-- the following jQuery statement will change -->
<a href=""></a>
<!-- to: <a href="http://www.jquery.com">jQuery</a> -->
<script>

jQuery('a').text('jQuery'). 
attr('href'. 'http://www.jquery.com');

</script>
</body>

</html>

jQuery: Example
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n The jQuery text method inserts the text 
“jQuery” between the anchor tags

n The jQuery attr method sets the href attribute 
to the jQuery Web site

n In order to run the code, save it to a HTML file 
and insert the CDN url below into the src
attribute in the first script tag in the head 
section (i.e. replace the …)
n https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js

jQuery: Example
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n We can also use jQuery to create new DOM 
elements and then do something with these

n In the example on the next slide, we create the 
anchor element (which is not an element of the 
original DOM)

n Then append it to the DOM
n This is done with the jQuery appendTo method

jQuery: Another Example
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<!DOCTYPE html>
<html lang="en">

<head>

<script src="…"> <!-- include src CDN address -->
</script>

</head>
<body>

<!– Note: no anchor tag -->

<script>

jQuery('<a>jQuery</a>').
attr('href', 'http://www.jquery.com'). 
appendTo('body');

</script>
</body>

</html>

jQuery: Another Example
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n jQuery Application Programmer Interfaces:
n jQuery core
n Selectors
n Attributes
n Traversal
n Manipulation
n CSS
n Events
n Effects
n Ajax
n Utilities
n jQuery User Interface

jQuery APIs
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n jQuery core functions:
n $(expression, [context])

n Eg: $('input: radio', document.form[0]);
n $(html)

n Eg: $('<div id="load">Loading… </div>’);
n $(elements)

n Eg: $(document.body).css('background', 'red');
n $(callback)

n Eg: $(function() { alert("test"); } )

jQuery API: Core
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n Selectors:
n jQuery supports nearly all CSS selectors from CSS 

1 through 3
n Always use the jQuery alias $(), no matter which 

type of selector you use
n Types of Selectors:

n Basic – element, #id, class, .classA.classB
n Eg: $('p'), $('#id'), $('.class'), $('.classA.classB')

n Hierarchy – ancestor, descendent, parent > child, 
prev + next
n Eg: $('form input'), $('#main > *'), $('label + input')

jQuery API: Selectors
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n Form

jQuery API: Selectors

Selectors Matched Elements

:input input, select, textarea and button 
elements

:text, :radio, :checkbox, :image, 
:submit, :reset, :password, :file

input element and attribute that is 
equal to the specified selectors

:button button element, input element with 
type "button"
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n Basic filters
n :first, :last, :not(selector), :even, :odd, :eq(index), 

:gt(index), :lt(index), :header, :animated
n Attribute filters

n [attribute], [attribute!=value], [attribute^=value], 
[attribute$=value], [attribute*=value], [filter1][filter2]

n Select elements having specified attribute, where:
n ^= value begins exactly with a given string
n != does not contain given value
n $= value ends exactly with a given string
n *= contains a given substring

jQuery API: Selectors
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n Attributes:
n attr:

n attr(name), attr(properties), attr(key,value), 
removeAttr(name)

n class:
n addClass(class), removeClass(class), toggleClass(class)

n html: html(), html(value)
n text: text(), text(value)
n value: val(), val(value)

jQuery API: Attributes
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n Events:
n Page load: ready(fn)
n Event handling:

n bind(type, fn), unbind(type, fn), trigger(event)
n Event helpers:

n click(), click(fn), mousedown(fn), mouseout(fn), …

jQuery API: Events
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n Effects:
n Basics:

n show(), show(speed), hide(), toggle(), toggle(speed)
n Fading:

n fadeIn(speed), fadeOut(speed), fadeTo(speed, opacity)

jQuery API: Effects
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n Ajax Request:
n $.ajax(options); options is a set of key:value pairs
n $.get(url, [data], [callback], [type])
n $.post(url, [data], [callback], [type])
n $.getJSON(url, [data], [callback], [type])
n $.getScript(url, [callback])

jQuery API: Ajax
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jQuery Syntax

n As mentioned earlier, the jQuery syntax is tailor-
made for selecting HTML elements and 
performing some action on the element(s)

n Basic syntax is:
$(selector).action()

n The $() alias is used to define/access the 
jQuery() method

n A selector is used to "query (or find)" HTML 
elements

n A jQuery action() method is used to be perform 
some task on the "selected" element(s)
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// hides all <p> elements
$("p").hide()
// hides the element with id="test"
$("#test").hide()“

§ Refer jQuerySelectors.xls for a complete list of 
jQuery selectors

jQuery: Example
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n It is good practice to wait for the DOM to be 
fully "loaded and ready" before working on it

n Code that manipulates the DOM can run in a 
handler for this event

n This handler is the DOM ready event
// DOM Ready Event

$(document).ready( function() {

// methods go here...

});

jQuery: ready Event
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n This handler prevents any jQuery code from 
running before the DOM is finished loading

n The event is typically placed in the head 
section, before the body of the document 

n Below is a variant of this method call, that is 
much more succinct:
// DOM Ready Event

$( function() {

// methods go here...

});

jQuery: ready Event
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// hides all <p> elements when button is clicked
$( function() { // Document Ready Event

$("button").click( function() {
$("p").hide();

});
});

// hides element with id="test" when button is clicked
$( function() { // Document Ready Event

$("button").click( function() {
$("#test").hide();

});
});

jQuery: ready Event Examples



28jQuery: ready Event Examples

// hides element with class="test" when button clicked

$( function() { // Document Ready Event

$("button").click( function() {

$(".test").hide();

});

});

§ You can attach as many ready events to the 
document as you like

§ They are executed in the order they are added



29jQuery: load Event

n ready will execute once the DOM is loaded, but 
before the window loads

n So we do not have to wait for the 
window.onload to manipulate the DOM

n However, sometimes we might want to wait for 
window.onload event, so that code is executed 
once the entire page (including all assets) is 
completely loaded
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n This is done by attaching a load event handler 
to the window object

n The load method can invoke a function once 
the window is completely loaded
// Window Load Event

$(window).load( function() {

// methods go here...

});

jQuery: load Event



31jQuery: ready Event Re-visited

§ Most jQuery usage will attempt to manipulate 
the DOM, which is why we need the ready
event

§ OR do we??
§ Nowadays (with modern browsers) this is not 

entirely necessary
§ We can simply place our jQuery code before the 

closing body tag i.e. </body>
§ This ensures that the DOM is completely loaded as 

the document will be parsed from top to bottom
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<!DOCTYPE html>

<html lang="en">

<head><title>Ready Event</title></head>

<body>

<p>This demonstrates ready without the method</p>

<script src="https://ajax.googleapis.com/
ajax/libs/jquery/3.2.1/jquery.min.js">

</script>

<script>alert($("p").text());</script>

</body>

</html>

jQuery: ready Event Re-visited
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jQuery: External Files

§ Like JavaScript, you can put your jQuery 
functions in a separate .js file

§ This is encouraged, as is modular design
§ To use jQuery functions from a separate file, 

use the src attribute to refer to the .js file:
<head>

<script src="https://ajax.googleapis.com/
ajax/libs/jquery/3.2.1/jquery.min.js">

</script>
<script src="my_jQuery_functions.js"></script>

</head>



34

jQuery Event Methods

§ Most DOM events have an equivalent jQuery 
method

§ Refer to jQueryEvents.xls for a list of jQuery 
methods that correspond to DOM events

§ For example, to assign a click event to all 
paragraphs on a page, you can do the 
following:
$("p").click();
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jQuery Event Methods

§ However, we must assign an appropriate action 
for when an event is triggered

§ This is done by passing a function to the event:

$("p").click( function() {

// action (event handler) goes here!

});
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jQuery Event Methods

§ Eg: When a click event fires on a <p> element, 
we can hide the current <p> element:

$("p").click( function() {

$(this).hide();

});
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jQuery Event Methods

§ Eg: The 1st function below is executed when the 
mouse enters the HTML element ("id=#p1"), 
and the 2nd function is executed when the 
mouse leaves that HTML element:
$("#p1").hover( function() {

alert("You entered p1!");
}, // note: comma separating the functions
function() {
alert("Bye! You now leave p1!");

});



38The on() Method

§ The on() method attaches one or more event 
handlers for the selected elements

§ Eg: Attach a click event to a <p> element:

$("p").on("click", function() {

$(this).hide();

});



39The on() Method

§ Eg: Attach multiple event handlers to a <p>
element:
$("p").on({

mouseenter: function(){
$(this).css("background-color", "gray");

}, 
mouseleave: function(){

$(this).css("background-color", "blue");
}, 
click: function(){

$(this).css("background-color", "red");
} 

});
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jQuery Effects

§ You can apply various effects to HTML 
elements with the following methods:
§ Hide, Show, Toggle (between Hide and Show), 

Slide, Fade, and Animate (allows you to manipulate 
ALL CSS properties), Stop (effect)

§ You should research the exact syntax required 
for these methods
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jQuery Callback Functions

§ JavaScript statements are executed line by line
§ However, with effects such as those just 

mentioned, the next line of code can be run 
even though the effect is not finished

§ This can create errors!!
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jQuery Callback Functions

§ To prevent these types of errors, you can create 
a callback function, which is executed after the 
current effect is 100% finished

§ Typical syntax:

$(selector).effect(speed, callback);
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jQuery Callback Functions

§ To demonstrate how an error may occur, the 
example below has no callback parameter, so 
the alert box will be displayed before the hide 
effect is completed:
$("button").click( function() {

$("p").hide(1000);

alert("Paragraph is now hidden");

});
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jQuery Callback Functions

§ To demonstrate how to prevent the error, the 
example below has a callback parameter to the 
hide method that will be executed only after 
the hide effect is completed:
$("button").click( function() {

$("p").hide("slow", function() {

alert("Paragraph is now hidden");

});

});
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jQuery: Chaining

§ jQuery allows us to run multiple jQuery 
methods (on the same element) within a single 
statement

§ This is achieved by chaining together 
actions/methods



46

jQuery: Chaining

§ To chain an action, you simply append the 
action to the previous action using the 'dot' 
notation

§ The following example chains together the 
css(), slideUp(), and slideDown()
methods

§ The "p1" element first changes to red, then it 
slides up, and then it slides down

$("#p1").css("color","red").slideUp(2000).slideDown(2000);
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jQuery: Chaining

§ When chaining, the line of code could become 
quite long

§ jQuery is not very strict on layout
§ You can format it like you want, including line 

breaks and indentations
§ Eg:

$("#p1").css("color", "red")

.slideUp(2000)

.slideDown(2000);
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jQuery: DOM Manipulation

§ jQuery comes with many DOM related methods 
that make it easy to access and manipulate 
DOM elements and attributes

§ To get content, there are three useful jQuery 
methods for DOM manipulation:
§ text() – Returns the text content of selected 

elements
§ html() – Returns the content of selected elements 

(including HTML markup)
§ val() – Returns the value of form fields
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jQuery: DOM Manipulation

§ The following examples demonstrate how to 
get content from id #btn1 and #test with the 
jQuery text() and html() methods:
$("#btn1").click( function() {

alert("Text: " + $("#test").text());
});

$("#btn2").click( function() {
alert("HTML: " + $("#test").html());

});
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jQuery: DOM Manipulation

§ The following example demonstrates how to 
get the value of a form input field (id #btn1
and #test) with the jQuery val() method:
$("#btn1").click( function() {

alert("Value: " + $("#test").val());

});
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jQuery: DOM Manipulation

§ The same three useful jQuery methods for 
DOM manipulation exist to set content:
§ text() – Sets/modifies the text content of 

selected elements
§ html() – Sets/modifies the content of selected 

elements (including HTML markup)
§ val() – Sets/modifies the value of form fields
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jQuery: DOM Manipulation

§ The following example demonstrates how to 
set content with the jQuery text() and html()
methods:
$("#btn1").click( function() {

$("#test1").text("Hello World"));
});

$("#btn2").click( function() {
$("#test2").html("<b>Hello World</b>"));

});
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jQuery: DOM Manipulation

§ The following example demonstrates how to set 
the value of a form input field with the jQuery 
val() method:
$("#btn1").click( function() {

$("#test3").val("Minnie Mouse"));

});
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jQuery: DOM Manipulation

§ The jQuery attr() method can be used to get 
attribute values

§ The following example demonstrates how to get 
the value of the href attribute in a link:
$("button").click( function() {

alert($("#w3s").attr("href"));

});

§ For a complete list of all jQuery HTML methods, 
refer to jQuery-html-css-methods.xls
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jQuery: DOM Manipulation

§ The jQuery attr() method can also be used 
to set/modify attribute values

§ The following example demonstrates how to set 
the value of the href attribute to a link:
$("button").click( function() {

alert($("#w3s").attr("href", 
"https://www.w3schools.com/jquery/"));

});
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jQuery: DOM Manipulation

§ The attr() method also allows setting 
multiple attributes at the same time

§ The following demonstrates how to set the 
href and title attributes at the same time:

$("button").click( function() {
$("#w3s").attr( { "href" : 
"https://www.w3schools.com/jquery/",

"title" : "W3Schools jQuery Tutorial"
});

});
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jQuery: DOM Manipulation

§ All of the three jQuery methods: text(), 
html(), and val(), also come with a callback
function option

§ The callback function has two parameters:
1. The index of the current element in the list of 

elements selected, and
2. The original (old) value

§ You then return the string you wish to use as 
the new value from the function
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jQuery: DOM Manipulation

§ The following two examples demonstrate 
text() and html() with a callback function:
$("#btn1").click( function() {

$("#test1").text( function(i, origText){
return "Old text: " + origText + 

" New text: Hello world!
(index: " + i + ")"; 

});
});
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jQuery: DOM Manipulation

$("#btn2").click( function() {

$("#test2").html( function(i, origText) {

return "Old html: " + origText +

" New html: Hello <b>world!</b>

(index: " + i + ")"; 

});

});
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jQuery: DOM Manipulation

§ The jQuery method attr(), also comes with a 
callback function

§ The callback function has two parameters:
1. The index of the current element in the list of 

elements selected, and
2. The original (old) attribute value

§ You then return the string you wish to use as 
the new attribute value from the function
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jQuery: DOM Manipulation

§ The following example demonstrates attr()
with a callback function:
$("button").click( function() {

$("#w3s").attr("href", function(i, origAttr)
{

return origAttr + "/jquery/"; 

});

});
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jQuery: Add Elements/Contents

§ The following jQuery methods are used to add 
new HTML content:
§ append() – Inserts content at the end of the 

selected elements
§ prepend() – Inserts content at the beginning of 

the selected elements
§ after() – Inserts content after the selected 

elements
§ before() – Inserts content before the selected 

elements
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jQuery: Add Elements/Contents

§ The append() and prepend() methods can 
also be used to add new HTML elements
§ They can take an infinite number of new elements 

as parameters
§ The new elements can be generated with 

text/HTML with jQuery, or with JavaScript code and 
DOM elements

§ append() adds the new elements and text to the 
end of the page body

§ prepend() adds to the beginning of the page body
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jQuery: Add Elements/Contents

§ Eg: create 3 new elements (eg: paragraphs):
function appendText() {

// Create element with HTML 

var txt1 = "<p>Text1.</p>";
// Create with jQuery
var txt2 = $("<p></p>").text("Text2.");
// Create with DOM

var txt3 = document.createElement("p");
txt3.innerHTML = "Text3.";
// Append the 3 new elements
$("body").append(txt1, txt2, txt3);

}



65

jQuery: Remove Elements/Contents

§ To remove elements and content, there are 
mainly two jQuery methods:
§ remove() – Removes the selected element AND

its child elements
§ empty() – Removes the child elements FROM the 

selected element(s)
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jQuery: Remove Elements/Contents

§ jQuery remove() Method
$("#div1").remove();

§ N.B. #div1 AND any contents are gone!
§ jQuery empty() Method
$("#div1").empty();

§ N.B. #div1 still exists; however, the contents of 
#div1 are gone

§ Refer w3schools for examples
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jQuery: Manipulating CSS

§ jQuery has several methods for CSS 
manipulation:
§ addClass() – Adds one or more classes to the 

selected elements
§ removeClass() – Removes one or more classes 

from the selected elements
§ toggleClass() – Toggles between 

adding/removing classes from the selected 
elements

§ css() – Sets or returns the style attribute
§ Refer w3schools for examples
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jQuery: Manipulating CSS

§ To return the value of a specified CSS property, 
use the following syntax:
css("propertyname");

§ To set a specified CSS property, use the 
following syntax:
css("propertyname","value");

§ To set multiple CSS properties, use the 
following syntax:
css({"propertyname":"value",...});
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jQuery: Dimensions

§ jQuery has several important methods for 
working with dimensions:
§ width() – sets or returns the width of an element
§ height() – sets/returns the height of an element 
§ innerWidth()
§ innerHeight()

§ outerWidth()

§ outerHeight()

§ Refer w3schools for examples
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jQuery: Traversing

§ jQuery traversing methods are used to "find" (or 
select) HTML elements based on their relation 
to other elements

§ Starting with one selection and moving through 
that selection until you reach the elements you 
desire

§ Think of DOM as composed of elements in a 
hierarchical tree structure
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jQuery: Traversing

§ You can easily move up (ancestors), down 
(descendants) and sideways (siblings) within 
the tree structure, starting from the selected 
(current) element
§ An ancestor is a parent, grandparent, great-

grandparent, and so on
§ A descendant is a child, grandchild, great-

grandchild, and so on
§ Sibling share the same parent
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jQuery: Traversing

§ Three useful jQuery methods for traversing up 
the DOM tree are:
§ parent() – returns the direct parent element of 

the selected element; i.e. a single step up the tree
§ parents() – returns all ancestor elements of the 

selected element; i.e. all the way up to the root 
element of the document tree

§ parentsUntil() – returns all ancestor elements 
between the selected element and a given 
argument
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jQuery: Traversing

§ Two useful jQuery methods for traversing down 
the DOM tree are:
§ children() – returns all direct children of each 

occurrence of the selected element; i.e. a single 
step down the tree
§ You can filter the search with an optional parameter

§ find() – returns all descendant elements of the 
selected element all the way down to the last 
descendant

§ Refer w3schools for other methods/examples
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jQuery: Traversing

§ There are many useful jQuery methods for 
traversing sideways within the DOM tree:
§ siblings() – returns all sibling elements of the 

selected element
§ You can filter the search with an optional parameter

§ next(), nextAll(), nextUntil()
§ prev(), prevAll(), prevUntil()

§ Refer w3schools for examples related to 
traversing using sibling methods
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jQuery: Filter Methods

§ The most basic filtering methods are:
§ first(), last() and eq()
§ These allow you to select a specific element based 

on its position in a group of elements
§ Other filtering methods:
§ filter() and not()
§ These allow you to select elements that match, or 

do not match, a certain criteria
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jQuery: Filter Methods

§ The first() method returns the first element of 
the specified elements

§ The last() method returns the last element of 
the specified elements

§ The eq() method returns an element with a 
specific index number of the selected elements
§ The index numbers start at 0
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jQuery: Filter Methods

§ The filter() method lets you specify a criteria
§ Elements that do not match the criteria are removed 

from the selection, and those that match will be 
returned

§ The not() method returns all elements that do 
not match the criteria
§ Logically, this specifies the opposite of filter()
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n It must be emphasized that usage of jQuery is 
not compulsory in this unit
n It is presented in this lecture for your edification
n There are no exercises set for jQuery in the tutorial 

for this topic
n However, you encouraged to learn and use jQuery 

for your second assignment; you will find it easier to 
develop an application using jQuery client-side

n IMPORTANTLY, there will be no questions on 
jQuery in the final examination

jQuery
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Further Reading

n This lecture does NOT cover the jQuery 
comprehensively

n You should utilize any of the materials 
suggested in the next slide

n Visit the jQuery homepage for useful materials, 
and visit one of the online tutorials suggested
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2Lecture Objectives

n Relevance to unit objectives:
n Learning objective 2: Writing software

n Relevance to assessments:
n jQuery can provide very convenient client-side 

usage
n It could prove most beneficial in your second 

assignment for AJAX usage and the required 
tabular and graphical presentation of output
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jQuery: AJAX

§ As ICT286 is a pre-requisite unit for this unit, 
you should be conversant with, and know how 
to use AJAX, in client/server communication

§ If you are vague about the details (in particular 
the usage), you should review the lecture 
material and lab work from last semester
§ AJAX usage is required for the second assignment
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jQuery: AJAX

§ jQuery provides several methods to facilitate 
AJAX functionality

§ With the jQuery AJAX methods, you can 
request text, HTML, XML, or JSON from a 
remote servers using both HTTP GET and 
POST methods

§ You can load the external data directly into the 
selected HTML elements of your web page!
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jQuery: AJAX

§ The jQuery ajax() function is the lowest level 
of abstraction available for XMLHttpRequests
§ It provides greater flexibility and functionality than 

the other available AJAX functions
§ In fact, the AJAX functions listed below leverage the 

ajax() function:
§ load()

§ get()

§ post()

§ getJSON()

§ getScript()
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jQuery: AJAX

§ These other functions, which can be considered 
shortcuts of the ajax() function, are handy for 
individual tasks that do not require the full 
features of ajax()

§ When you do require the full features and 
customizations that jQuery offers for AJAX, you 
should use ajax()

§ N.B. ajax() and load() both use the GET 
HTTP method by default
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n An AJAX Request Example:
$.ajax(
{

url:  "process.php",
type: "POST",
data: "class=6470&name=Tim",
success: function(msg){

alert("Data:" + msg);
}

}
);

jQuery: ajax() Method



8jQuery: AJAX load() Method

§ The load() method loads data from a server 
and puts the returned data into the selected 
HTML element

§ Syntax:
$(selector).load(URL, data, callback);

§ The required URL parameter specifies the URL you 
wish to load

§ The optional callback parameter is the name of a 
function to be executed after the load()
method is completed
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§ Given the contents of a file "demo_test.txt"
below:
<h2>jQuery and AJAX is FUN!!!</h2>

<p id="p1">Some text in a paragraph.</p>

§ The following code loads the content of the file 
demo_test.txt into a specific <div> element:
$("#div1").load("demo_test.txt");
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§ It is also possible to add a jQuery selector to 
the URL parameter

§ The following example loads the content of the 
element with id="p1", inside the file 
demo_test.txt, into a specific <div> element:
$("#div1").load("demo_test.txt #p1");



11jQuery: AJAX load() Method

§ The optional callback parameter specifies a 
callback function to run when the load() 
method is completed

§ The callback function can have the following 
parameters:
§ responseTxt - contains the resulting content if the 

AJAX call succeeds
§ statusTxt - contains the status of the AJAX call
§ xhr - contains the XMLHttpRequest object
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§ The following example displays an alert box 
after the load() method completes

§ If the load() method has succeeded, it 
displays:
"External content loaded successfully!"

§ If it fails, it displays an error message with the 
status and statusTxt
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$("button").click( function() {

$("#div1").load("demo_test.txt", 
function(responseTxt, statusTxt, xhr) {

if(statusTxt == "success")
alert("External content loaded 

successfully!");

if(statusTxt == "error")

alert("Error: " + xhr.status + ": " 
+ xhr.statusTxt);

});

});

jQuery: AJAX load() Method
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§ The $.get() method requests data from the 
server using the HTTP GET request

§ Syntax:
$.get(URL, callback);
§ The required URL parameter specifies the URL of 

the resource you wish to request
§ The optional callback parameter is the function to 

be executed if the request succeeds

jQuery: AJAX
get() and post() Methods
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§ The $.post() method requests data from the 
server using the HTTP POST request

§ Syntax:
$.post(URL, data, callback);
§ The required URL parameter specifies the URL of 

the resource you wish to request
§ The optional data parameter specifies some data to 

be send along with the POST request
§ The optional callback parameter is the function to 

be executed if the request succeeds

jQuery: AJAX
get() and post() Methods
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§ In the following example, the first parameter of 
$.get() is the URL we wish to request

§ The second parameter is a callback function
§ The first callback parameter holds the returned 

content of the page we requested
§ The second callback parameter holds the status of 

the request
§ N.B. the fictional script demo_get.php performs 

some hyperthetical processing server-side

jQuery: AJAX
get() and post() Methods
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$("button").click( function() {

$.get("demo_get.php", function(data, status){

// display returned data and status

alert("Data: "+data+" Status: "+status);

});

});

jQuery: AJAX
get() and post() Methods
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§ In the following example, the first parameter of 
$.post() is the URL we wish to request

§ The second parameter is some data to send 
along with the request (a JSON object)

§ The third parameter is a callback function
§ The first callback parameter holds the returned 

content of the page we requested
§ The second callback parameter holds the status of 

the request

jQuery: AJAX
get() and post() Methods
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$("button").click( function() {
$.post("demo_post.php",
{

name: "Luke Skywalker",
city: "Spacecity"

},
function(data, status) {

alert("Data: "+data+"Status: "+status);
});

});

jQuery: AJAX
get() and post() Methods
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n AJAX Events:
n ajaxComplete(callback), ajaxStart(callback), 

ajaxStop(callback), ajaxSend(callback), 
ajaxError(callback), ajaxSuccess(callback)

n Eg:
$('div id="loading">Loading...</div>')

.insertBefore("#images")

.ajaxStart( function() {
$(this).show();

}).ajaxStop( function() {
$(this).hide();

}
);

jQuery API: AJAX
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§ jQuery's DOM manipulation and iteration utility 
methods facilitate manipulation of table cells 
without having to worry too much about tags

§ The following material introduces some basic 
table operations by way of an example
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§ The next slide shows a function that accepts a 
container element and multi-dimensional array

§ The outer array contains the rows and an inner 
one holds the columns

§ All of the styling is done using CSS generated 
by the free online CSSTableGenerator
(http://csstablegenerator.com/)
§ You can of course use your own CSS file, and will

be required to do so for the 2nd assignment
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§ This function should be put into a JavaScript:
function makeTable(container, data) {

var table = 
$("<table/>").addClass('CSSTableGenerator');
$.each(data, function(rowIndex, r) {

var row = $("<tr/>");
$.each(r, function(colIndex, c) { 

row.append($("<t"+(rowIndex == 
0 ? "h" : "d")+"/>").text(c));

});
table.append(row);

});
return container.append(table);

}

jQuery Tables
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§ The $.each() function is an easy way to iterate 
through an array's elements

§ The outer one deals with the rows, the 
inner/nested one creates the column elements

§ The row.append() call uses rowIndex to use 
table headers (<th>) for the first row, instead of 
the regular cells (<tr>)

§ Only the "h" and "d" letters set them apart

jQuery Tables
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§ Embed the previous function in a HTML file
§ makeTable() should be called in the ready

event, so that the DOM has fully loaded
§ This table contains 4 rows containing 3 cities

$(document).ready(function() {
var data = [["City 1", "City 2", "City 3"], 

["New York", "LA", "Seattle"], 
["Paris", "Milan", "Rome"], 
["Pittsburg", "Wichita", "Boise"]]

var cityTable= makeTable($(document.body),data);
});

jQuery Tables



26

§ There is no one method to append a row to the 
end of a table because of all the different 
possible layout options

§ If we disregard the rare (and dubious) use of 
nested tables, we can use the last attribute to 
the <tr> tag in the table and the following code 
to do the job

Table Operations: Append Row
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function appendTableColumn(table, rowData) {
var lastRow = 

$('<tr/>').appendTo(table.find('tr:last'));
$.each(rowData, function(colIndex, c) { 

lastRow.append($('<td/>').text(c));
});
return table.append(lastRow);

}
// Usage: add the following line below the call to
// the function makeTable on slide 25
appendTableColumn(cityTable, ["Calgary", "Ottawa", 

"Yellowknife"]);

Table Operations: Append Row
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§ The same logic that worked in creating a table 
can be used to retrieve contents of table cells
§ In fact, there really isn't a whole lot of difference 

between the two
§ The only caveat is that the find() function has 

to search for both TH and TD cell types
§ find() supports multiple selectors, but they 

have to be supplied via one string argument 
and separated by commas

Table Operations: Retrieving Contents
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function getTableData(table) {
var data = [];
table.find('tr').each(function(rowIndex,r){

var cols = [];
$(this).find('th,td')

.each(function(colIndex, c){
cols.push(c.textContent);

});
data.push(cols);

});
return data;

}

Table Operations: Retrieving Contents
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§ When it comes to working with HTML tables 
and data on the client-side, JavaScript/jQuery 
combined provides a convenient approach (as 
we just seen)

§ However, loading table data that has been 
returned from a server (i.e. via AJAX) requires a 
more powerful approach

§ For that, it is recommended that you utilize the 
DataTables jQuery plug-in
§ https://datatables.net/

Table Operations
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§ DataTables is a plug-in for the jQuery 
JavaScript library

§ It is a highly flexible tool, based upon the 
foundations of progressive enhancement, and 
will add advanced interaction controls to any 
HTML table

§ You should reference the manual for installation 
and usage available at:
§ https://datatables.net/manual

DataTables Plug-in for jQuery
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§ Getting started with DataTables is as simple as 
including two files in your web-site, the CSS 
styling and the DataTables script itself

§ These two files are available on the DataTables
Content Delivery Network (CDN):
§ //cdn.datatables.net/1.10.16/css/jquery.dataTables.

min.css
§ //cdn.datatables.net/1.10.16/js/jquery.dataTables.mi

n.js

DataTables Plug-in for jQuery
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§ There are many libraries that can be used for 
presentation of table data, but DataTables is a 
commonly used library that has good support 
and numerous examples

§ There is a DataTables youtube tutorial in the 
reference list at the end of these slides, to get 
your started

DataTables Plug-in for jQuery
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§ It is therefore recommended that you use the 
DataTables library for your 2nd assignment

§ You may of course choose to use another 
library or approach, but you will need to 
investigate any library usage for the task 
required

DataTables Plug-in for jQuery
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§ The second assignment requires you to present 
data (returned from a server) in a table format

§ You should spend time now to learn to work 
with the DataTables plug-in (or another library), 
that will allow jQuery to easily and nicely display 
table data

§ This will mean investigating and trying out the 
way to achieve this task, in your own time

jQuery Tables: Final Word
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§ The second assignment also requires you to 
present data (returned from a server) in a line
graph

§ You should spend time now to learn to work 
with a JavaScript or a jQuery plug-in that allows 
you to easily and nicely display a line graph

§ This will mean investigating and trying out the 
ways to achieve this task, in your own time

jQuery Tables: Graphics
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§ Some references are provided at the end of 
these slides, to help get you started

§ There is a tutorial on Canvas.js, which is a 
commonly used and well supported library (with 
numerous examples)

§ It is therefore recommended that you use the 
Canvas.js library for your 2nd assignment

§ You may of course choose to use another, but 
you will need to investigate any library usage 
for the task required

jQuery Tables: Graphics



38References (Tables)

§ Working with Tables Using jQuery
§ https://www.htmlgoodies.com/beyond/css/ 

working_w_tables_using_jquery.html
§ DataTables Table plug-in for jQuery

§ https://datatables.net/
§ Example:

§ https://datatables.net/examples/data_sources/js_array
§ jQuery Datatables Plugin Tutorial for Beginners 

(youtube video):
§ https://www.youtube.com/watch?v=sRjWHPv7JLk



39References (Graphics)

§ Canvas.js library for line graph:
§ https://canvasjs.com/jquery-charts/
§ https://canvasjs.com/docs/charts/integration/jquery/chart-

types/jquery-line-chart/
§ https://canvasjs.com/docs/charts/basics-of-creating-html5-

chart/updating-chart-options/
§ https://canvasjs.com/javascript-charts/dynamic-live-line-

chart/
§ Tutorial on Creating Charts | CanvasJS

JavaScript Charts
§ https://canvasjs.com/docs/charts/basics-of-creating-html5-

chart/



40References (Graphics)

§ jQuery line graph using Canvas:
§ https://web.archive.org/web/20130407101311/http://www.wo

rldwidewhat.net/2011/06/draw-a-line-graph-using-html5-
canvas/

§ Plotly.js (JavaScript graphing library)
§ https://plot.ly/javascript/
§ https://plot.ly/javascript/line-charts/


