
JSON
Lecture 8 (A)

FreeText
+ NodeJS JSON Parsing and Processing + NodeJS XML to JSON + JQuery Advanced

2

Learning Objectives

n Introduction to JavaScript Object Notation
(JSON)

n Look at JSON as an alternative technology for
storage and transportation of data on the Web

n Look at some example code to parse and
process JSON within the Node.js environment

Hong Xie

Hong Xie

3

n In the context of this unit:
n We look at JSON as an important alternative Internet

technology to use as solutions in different areas
n A major part of developing a JSON solution is to

design and implement software to deal with the
information in JSON formatted documents (JSON
applications)

n Node.js, like JSON, uses JavaScript programming
language, so there is a seamless integration

Learning Objectives

Hong Xie

Hong Xie

Introduction

n JSON is a lightweight, text-based open standard
designed for human-readable data interchange

n JSON is used primarily to store and transmit
data between a server and web applications
n We have seen in the last three Topics that XML also

provides a way of storing and transmitting such data
n JSON provides an alternative storage format to XML,

which is much more convenient to work with both at
a document level and in terms of parsing and
processing

4

Hong Xie

Hong Xie

Hong Xie

§ Although originally derived from the JavaScript
language, JSON is a language-independent
data format

§ Software for parsing and generating JSON data
is readily available in a large variety of
programming languages

5

Introduction

Hong Xie

Hong Xie

Hong Xie

§ The JSON format was originally specified by
Douglas Crockford

§ It is currently described by two competing
standards
§ The ECMA-404 standard is minimal, describing only

the allowed grammar syntax
§ The RFC 7159 provides some semantic and

security considerations, in addition to the allowed
grammar syntax

6

Introduction

Hong Xie

Hong Xie

Hong Xie

Hong Xie

§ JSON stands for JavaScript Object Notation
§ It was designed for human-readable data

interchange
§ It has been extended from the JavaScript scripting

language
§ Its filename extension is .json
§ The official JSON Internet Media type is

application/json
§ The Uniform Type Identifier is public.json

7

Introduction

Hong Xie

Hong Xie

Hong Xie

Hong Xie

n JSON can be used:
§ When writing JavaScript based applications

including browser extensions and websites
§ For serializing and transmitting structured data (in

JSON format) over network connections
§ Primarily to transmit data between web server

applications and web clients
§ For Web Services and API's to provide public data

(in JSON format)
§ With other modern programming languages

8

Introduction

n Characteristics of JSON:
n It is easy to read and write
n It is a lightweight text-based interchange format
n It is language independent
n It uses the JavaScript object literal notation to define

JSON objects

9

Introduction

Hong Xie

Hong Xie

Example: HTML Usage

<html>
<head>

<title>JSON Example</title>
<script type="text/javascript" src="book.js">
</script>

</head>
<body>

<script type="text/javascript">
displayJSON();

</script>
</body>

</html>

10

Hong Xie

Hong Xie

Example: HTML Usage

function displayJSON() {
var object1 = { "bookname": "Papillon",

"author": "Henri Charriere" };
document.write("<h1>JSON with JavaScript example</h1>");
document.write("
");
document.write("<h3>Bookname = "+ object1.bookname+"</h3>");
document.write("<h3>Author = "+ object1.author+"</h3>");
var object2 = { "bookname": "One Flew Over the Cuckoo’s Nest",

"author": "Ken Kesey" };
document.write("
");
document.write("<h3>Bookname = "+ object2.bookname +"</h3>");
document.write("<h3>Author = "+ object2.author+"</h3>");
document.write("<hr />");
document.write(object2.bookname + ", written by " +

object2.author + " can play with your mind!@#");
document.write("<hr />");

}

11

Hong Xie

Hong Xie

Example: Browser Output

JSON with JavaScript example

Bookname = Papillon
Author = Henri Charriere

Bookname = One Flew Over The Cuckoo’s Nest
Author = Ken Kesey

One Flew Over The Cuckoo’s Nest, written by Ken Kesey,
can play with your mind!@#

12

n JSON syntax is a subset of JavaScript syntax,
and includes the following:
n Curly braces designate objects (using the object

literal notation)
n Data is represented in property:value pairs
n Each property (key) is followed by a colon (':’)
n Each property:value pair is separated by a

comma (',') except for the last pair
n Square brackets designate arrays, where elements

are separated by a comma (',')

13

JSON Syntax

Example: JSON Object

{
"book": [
{

"id": "01",
"bookname": "Papillon",
"edition": "first",
"author": "Henri Charriere"

},
{

"id": "02",
"bookname": "One Flew Over the Cuckoo’s Nest",
"edition": "second",
"author": "Ken Kesey"

}]
}

14

Hong Xie

Hong Xie

Hong Xie

Hong Xie

15

Example: Things To Note

n The JSON object is defined within braces (i.e.
curly brackets '{' '}’), using object literal notation

n The name of the object is "book"
n This is immediately followed by a colon (':')
n The components of the object are defined in an

array, designated by square brackets '[' ']'
n Each array element is an JSON object separated

by a comma (',’)
n Again, each JSON object in the array is defined using

the object literal notation

16

Example: Things To Note

n The properties that describe a 'book' object are
id, bookname, edition, and author

n Each property is enclosed in double quotes and
is immediately by the colon (':')

n Each property has a value
n String values are enclosed in double quote
n Numeric, Boolean, and null values are not

n Each property:value pair (except for the last
one) is separated by a comma (',')

17

JSON Data Structures

n Formally, JSON supports the following two data
structures:
1. Collection of property:value pairs (this Data

Structure is supported by different programming
languages)

2. Ordered list of values (including array, list, vector or
sequence, etc.)

Hong Xie

Hong Xie

Hong Xie

18

JSON Data Types

Hong Xie

19

n The Number data type:
n Double-precision floating-point format as in

JavaScript and depends on implementation
n Octal and hexadecimal formats are not used
n No NaN or Infinity is used in Number

JSON Data Types: Number

20

§ Formal syntax:

var json-object = { string: number_value, ... }

§ Example (note that because the value is a
number, it is not quoted):

var obj = { "marks": 97 }

JSON Data Types: Number

Hong Xie

Hong Xie

21

JSON Data Types: String

n The String data type:
n A sequence of zero or more double quoted Unicode

characters, with possible backslash escaping
n Character is a single character string; i.e. a string

with length 1

n Formal syntax:
var json-object = { string: "string value", ... }

n Example:
var obj = { "name" : "John" }

Hong Xie

Hong Xie

22JSON Data Types:
String Escape Characters

Hong Xie

23

n The Boolean data type:
n Only includes true or false values

n Formal syntax:
var json-object = { string: true/false, ... }

n Example (note boolean value not quoted):
var obj = { "name": "Arnold",

"distinction": true }

JSON Data Types: Boolean

Hong Xie

24

n The Object data type:
n An unordered set of property:value pairs
n These pairs are enclosed in braces (curly brackets),

which means they begin with '{' and end with '}'
n Each property is followed by a colon (':') and the
property:value pairs are comma separated (',')

n The properties must be strings and should be
different from each other

n Objects should be used when the property names
are arbitrary strings

JSON Data Types: Object

25

n Formal syntax:
{ string : value, ... }

n Example:
{

"id": "011A",
"language": "JAVA",
"price": 500

}

JSON Data Types: Object

Hong Xie

Hong Xie

26

n The Array data type:
n An ordered collection of elements (typically objects

or property:value pairs)
n Arrays are designated by square brackets which

means they begin with '[' and end with ']' and
enclose a list of objects

n Array elements are comma separated (',')
n Array indexing can be started at 0 or 1
n Arrays should be used when the properties are

sequential integers

JSON Data Types: Array

Hong Xie

Hong Xie

Hong Xie

Hong Xie

27

n Formal syntax:
[value, ...]

n Example (N.B. array values are objects):
{

"book": [
{ "language": "Java", "edition": "third" },
{ "language": "C++", "edition": "fifth" },
{ "language": "Python", "edition": "second" }

]
}

JSON Data Types: Array

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

28

n The Whitespace data type:
n Can be inserted between any pair of tokens
n Can be added to make code more readable

n Example (declaration with and without
whitespace):

{
"book": [

{ "language": "Java", "edition": "third" },
{"language":"C++","edition":"fifth"},

]
}

JSON Data Types: Whitespace

Hong Xie

Hong Xie

Hong Xie

29

n The null data type (empty type)
n Formal syntax:
null

§ Example:
var i = null;
if(i == null) {

document.write("<h1>value is null</h1>");
}else{

document.write("<h1>value is not null</h1>");
}

JSON Data Types: null

Hong Xie

30

JSON Values

n A JSON value can include:
§ number (integer or floating point)
§ string
§ boolean
§ array
§ object
§ null

Hong Xie

Hong Xie

Hong Xie

Hong Xie

31

JSON Values

n Syntax:
String | Number | Object | Array |
TRUE | FALSE | NULL

§ Example:
{

"Number" : 1,
"String" : "sachin",
"null" : null,
"True" : true

}

Hong Xie

Hong Xie

Hong Xie

Hong Xie

32

n Objects can be created as an empty Object
(using the object literal notation):
var JSONObj = {};

n Property:value pairs can be added using the
dot notation '.'. Eg:
JSONObj.objname = "table";

Creating Simple JSON Objects

Hong Xie

Hong Xie

Hong Xie

Hong Xie

33

n OR an Object with properties (using the object
literal notation):
var JSONObj = { "bookname": "BLACK BOOK",

"price": 500 };

n Property bookname with a string value, property
price with a numeric value

n Properties can be accessed by using dot notation '.'.

Creating Simple JSON Objects

Hong Xie

34

n OR using the Object constructor:

var JSONObj = new Object();

n Property:value pairs can be added using the
dot notation '.'.

n Eg:

JSONObj.objage = 2001;

Creating Simple JSON Objects

Hong Xie

35

<html>
<head>

<title>Creating Object with JavaScript</title>
<script language="javascript" >

var JSONObj = { "name": "Fred","year": 2005 };
document.write("JSON / JavaScript Example");
document.write("
");
document.write("Name=" + JSONObj.name);
document.write("Year=" + JSONObj.year);

</script>
</head>
<body>
</body>

</html>

JSON Object Example: HTML

Hong Xie

Hong Xie

36

JSON / JavaScript Example

Name=Fred

Year=2005

Object Example: Browser Output

37

n Creating an array of objects in JavaScript using
JSON:
<html>

<head>
<title>Creation of an array of objects in

JavaScript using JSON</title>
<script language="javascript" >

document.writeln("JSON array object");

JSON Array Example: HTML

38

var books = { "Pascal" : [
{ "Name": "Pascal Made Simple",

"price": 700 },
{ "Name": "Guide to Pascal",

"price": 400 }
],
"Scala": [
{ "Name": "Scala for the Impatient",

"price": 1000 },
{ "Name": "Scala in Depth",

"price": 1300 }
]

}

JSON Array Example: HTML

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

39

var i = 0;
document.writeln("<table border='2'<tr>");
for(i=0;i<books.Pascal.length;i++) {

document.writeln("<td>");
document.writeln("<table border='1'

width=100 >");
document.writeln("<tr><td>Name

</td><td width=50>" +
books.Pascal[i].Name+"</td></tr>");

document.writeln("<tr><td>Price
</td><td width=50>" +

books.Pascal[i].price+"</td></tr>");
document.writeln("</table>");
document.writeln("</td>");

}

JSON Array Example: HTML

Hong Xie

Hong Xie

Hong Xie

40

for(i=0;i<books.Scala.length;i++) {
document.writeln("<td>");
document.writeln("<table border='1'

width=100 >");
document.writeln("<tr><td>Name

</td><td width=50>" +
books.Scala[i].Name+"</td></tr>");

document.writeln("<tr><td>Price
</td><td width=50>" +

books.Scala[i].price+"</td></tr>");
document.writeln("</table>");
document.writeln("</td>");

}
document.writeln("</tr></table>");

</script>
</head><body></body></html>

JSON Array Example: HTML

41

§ JSON array object

Array Example: Browser Output

42

n Node.js has emerged as a leading platform for
creating fully scalable applications within the
least amount of time

n Additionally, the platform is constantly upgraded
to allow developers to continue delivering
applications for their clients

n Unlike the case of XML, choosing JSON files for
storing, retrieving, and transmitting data is a
convenient option

JSON in Node.js

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

43

n The reason for this is that the JSON files are
simpler to work with (using dot notation to
access data and arrays to store and process
multiple objects)
n They are also less cluttered and easy-to-read

n Also, as JSON and Node.js are JavaScript
based, collaborating JSON files with Node.js
ensures that the information can be simply
accessed for processing

JSON in Node.js

44

n Step 1:
n Create a dummy JSON file:
{

"username": "xyz",
"password": "xyz@^123",
"email": "xyz@xyz.com",
"uid": 1100

}

n Save the above JSON file as dummy.json

Handling JSON Files in Node.js

Hong Xie

Hong Xie

45

n Step 2:
n Decide whether you want the synchronous or

asynchronous method for reading the JSON file
n Synchronous methods of reading a JSON file

basically refers to one-way execution, wherein there
is a single flow which executes the JSON file line by
line

n The control flow will move to the next statement only
after the current statement has completed

Handling JSON Files in Node.js

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

46

n Step 2:
n Asynchronous flow-control will move to the next line

regardless of whether the current statement has
completed, and possibly display information about
the asynchronous statement’s completion

n Synchronous methods may be referred to as
blocking methods, and asynchronous methods may
be referred to as non-blocking methods

Handling JSON Files in Node.js

Hong Xie

Hong Xie

Hong Xie

Hong Xie

47

n Step 3:
n Depending on your selection of the method for

reading the JSON file (asynchronous or
synchronous), the outputs would vary

n The examples on the next few slides demonstrate how
to access (parse) data stored in a JSON object

n Both asynchronous and synchronous methods are
considered

Handling JSON Files in Node.js

Hong Xie

Hong Xie

Hong Xie

48

JSON Example: Node.js

§ Save the following code in a file book.json
{

"book": [
{

"id": "01",
"bookname": "Papillon",
"edition": "first",
"author": "Henri Charriere"

},
{

"id": "02",
"bookname": "One Flew Over the Cuckoo's Nest",
"edition": "second",
"author": "Ken Kesey"

}]
}

Hong Xie

Hong Xie

Hong Xie

49

n Create JavaScript file testBookfss.js:

// Synchronous version using fs and JSON.parse
var fs = require('fs');
var obj = JSON.parse(

fs.readFileSync('./book.json', 'utf-8’)
);

// obj contains the JavaScript object for the json file

// here, we just display it

console.log(obj);

JSON Example: Synchronous fs

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

50

n Create JavaScript file testBookfsa.js:
var fs = require('fs');

var obj;

fs.readFile('./book.json', 'utf-8', function(error, data) {

if (error) throw error; // skip handling for now

obj = JSON.parse(data);

console.log(obj);

});

// as fs.readFile is asynchronous, the following

// statement may well be executed before the parsed

// result is displayed

console.log("The next statement after asynchronous read);

JSON Example: Asynchronous fs

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

51

§ Provided book.json is in the same directory
as your scripts, execute using node on
command line:
node testBookfss.js

§ But if you run the following command:
node testBookfsa.js

You will notice that the asynchronous read
hasn't finished when the next statement is
executed.

JSON Example: Node.js

Hong Xie

Hong Xie

Hong Xie

52

n Install jsonfile module with npm
n Create JavaScript file testBookjfs.js:

// Synchronous version using jsonfile
var jf = require('jsonfile');
var obj = jf.readFileSync('./book.json');
// obj contains the JavaScript object for the JSON data
// here, we just display it

console.log(obj);

JSON Example: Synchronous
jsonfile

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

53

n Create JavaScript file testBookjfa.js:
// Asynchronous version using jsonfile
var jf = require('jsonfile');

js.readFile('./book.json', function(error, obj) {

if (error) throw error; // skip handling for now
// obj contains the JavaScript object for the

// JSON data – can now process it.

// here, we just display it

console.log(obj);

});

console.log("The next statement after asynchronous read");

JSON Example: Asynchronous
jsonfile

Hong Xie

Hong Xie

Hong Xie

54

n JSON and XML are both human-readable
formats and language independent

n They both have support for creating, reading
and decoding data in real world situations

n We can compare JSON with XML based on the
following factors:

JSON Compared With XML

55

n Verbose
n XML is more verbose than JSON, so it is faster for humans

to read and write JSON
n Arrays Usage

n XML is used to describe structured data which does not
include arrays, whereas JSON does include arrays to help
define its objects

n Parsing
n JavaScript's eval method parses JSON
n When applied to JSON, eval returns the described object

JSON Compared With XML

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

56

n Syntactically:
n JSON
{

"company": "Volkswagen",
"name": "Vento",
"price": 800000

}

§ XML
<car>

<company>Volkswagen</company>
<name>Vento</name>
<price>800000</price>

</car>

JSON Compared With XML

Hong Xie

Hong Xie

57

n As we have seen in the lectures on XML, the
development of applications to parse and
process XML documents requires an advanced
skill set because processing is not straight
forward

n With JSON, parsing and processing is more
straight forward because JSON format is more
human-readable, and access to data is achieved
using the dot notation and array subscripts

JSON Compared With XML

58

n As JSON is the preferred format for transmitting
data around the Web, yet there is still much
legacy data stored in XML, there needs to be a
way to retrieve XML data and simply parse the
data to JSON

n There are a number of XML to JSON parsers
available
n By far the most common use SAX (eg: xml2js,

xml2json, and xmldoc); fewer examples use
DOM (eg: xml-objtree and libxmljs-dom)

Parsing XML To JSON

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

59

n Firstly, a DOM example (install library):
n npm install xml-objtree

var ObjTree = require('xml-objtree');
var objTree = new ObjTree();
var xml = [
'<?xml version="1.0" encoding="UTF-8"?>',
'<book>',

'<name>Papillion</name>',
'<edition>first</edition>',
'<author>Henri Charriere</author>',

'</book>'
].join('\n');
var obj = objTree.parseXML(xml);
console.log(JSON.stringify(obj));

Parsing XML To JSON: DOM

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

60

n We will concentrate on the simple SAX parser
n npm install xml2js

var fs = require('fs'), // File System Module
var xml2js = require('xml2js'); // XML2JS Module
var parser = new xml2js.Parser(); // Create parser object

// Asynchronously read and parse the file
fs.readFile('./test.xml', function(error, data){

if (error) throw error; // skip handling for now
parser.parseString(data, function (err, result){

if (err) throw err;
console.log(result);

});
});

Parsing XML To JSON: SAX

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

61

n Another example:
var fs = require('fs'), // File System Module
var xml2js = require('xml2js'); // XML2JS Module
var inputFile = "books.xml"; // XML file
var parser = new xml2js.Parser(); // Create parser object

// Synchronously read
var xmlData = fs.readFileSync(inputFile, 'utf8');

// Parse the file
parser.parseString(xmlData, function(error, result){

if (error) throw error;
var s = JSON.stringify(result);
console.log("Result" + "\n", s, "\n");

});

Parsing XML To JSON: SAX

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

62

§ When XML elements contain attributes, the
previous code version creates an attribute object
named $ on the parent, then assigns the values
as children of the attribute object

§ To place attributes as direct children of the
parent object (without the intervening $ object),
we can set the mergeAttrs option to true when
declaring the parser:
var parser = new xml2js.Parser(

{ mergeAttrs: true }
);

Parsing XML To JSON: SAX

Hong Xie

Hong Xie

Hong Xie

Hong Xie

63

§ The module xml-to-json-promise is a promise-
supported wrapper around the xml2js library
§ This module makes it easy to convert XML data and

files to the JSON format
§ To install:

§ npm install xml-to-json-promise

Parsing XML To JSON: SAX

Hong Xie

Hong Xie

Hong Xie

64

§ To convert raw XML data to JSON, we can use
the function:
xmlDataToJSON(xml, [options])

§ The function requires the xml (as a string), and
the optional options are the xml2js options you
want to use when parsing to JSON

§ The function returns a promise with the json
data

Parsing XML To JSON: SAX

Hong Xie

Hong Xie

Hong Xie

Hong Xie

65

convert = require('xml-to-json-promise');

// convert an xml file to json
convert.xmlFileToJSON('xmlfile.xml').then(json => {

console.log(json);
});

// convert raw xml data to json
convert.xmlDataToJSON('<book>Help</book>').then(json => {

console.log(json);
});

Parsing XML To JSON: SAX

Hong Xie

Hong Xie

Hong Xie

66

§ Here is an example for saving your XML file to a
JSON file using xml-to-json-promise

var convert = require('xml-to-json-promise');
var fs = require('fs');

convert.xmlFileToJSON('xmlfile.xml').then(json => {
fs.writeFile('file.json', JSON.stringify(json),

error => {
if (error) { throw error };
console.log('file saved!');

});
});

Parsing XML To JSON:
SAVE TO JSON FILE

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

Hong Xie

67

n AJAX is Asynchronous JavaScript and XML
n It is used on the client side as a group of inter-

related web development techniques in order to
create asynchronous Web applications

n Using the AJAX model, Web applications can
asynchronously send and retrieve data from a
server without interfering with the display or
behaviour of an existing page

JSON With AJAX

68

n Many developers use JSON to pass AJAX
updates between client and server

n A note in relation to terminology:
n AJAX = Asynchronous JavaScript and XML
n AJAJ = Asynchronous JavaScript and JSON
n Because AJAX was well established prior to the

adoption of AJAJ, and AJAJ (as an acronym) is a bit
awkward to pronounce, the term AJAX is commonly
used to refer to AJAJ

JSON With AJAX

69

n Websites updating live sports scores can be
considered examples of AJAX usage

n If these scores have to be updated on the
website, then they must be stored on the server
so that the webpage can retrieve the score when
it is required

n This is where we can more easily make use of
JSON formatted data, rather than XML formatted
data

JSON With AJAX

70

n Any data that is updated using AJAX can be
stored using JSON format on a web server

n AJAX is used so JavaScript can retrieve JSON
files when necessary, parse them, and then
perform one of the following two tasks:
n Store parsed values in variables for processing

before displaying them on the webpage
n Directly assign data to DOM elements in the

webpage, so that it gets displayed on the website

JSON With AJAX

71

var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange = function() {

if (this.readyState == 4 && this.status == 200){
var myObj=JSON.parse(this.responseText);
document.getElementById("demo").innerHTML

= myObj.name;
}

};
xmlhttp.open("GET", "json_demo.txt", true);
xmlhttp.send();

Example: JSON With AJAX

72

n There is example code on ceto (in this weeks
tutorial) in the file: jsonajax.html

n It provides another demonstration of JSON
with AJAX

n You should attempt to understand the code:
n As you have done AJAX in the pre-requisite unit

ICT286, you should be able to get a feel for it
n Hint: loading the function loadJSON() is used

asynchronously to upload JSON data
n It has a link to a data file data.json on the

tutorialspoint website

JSON With AJAX

73

Research Future
n Note: we have only given a brief coverage of the

fundamentals of JSON in this lecture
n We will cover JSON Schema in the next set of

slides
n Recall from the Unit Objectives in week 1, that

this unit will require you to research
independently to discover how to utilize
technologies that we cover briefly: JSON
processing is one such instance (in particular,
parsing XML to JSON can be handy!)

74

References

n JavaScript JSON Cookbook, Ray Rischpater.
Packt publishing.

n Beginning JSON, Ben Smith. Apress.
n JSON: JavaScript Object Notation, Tutorials

Point
n http://www.tutorialspoint.com/

n JSON QUICK GUIDE, Tutorials Point
n http://www.tutorialspoint.com/json/

json_quick_guide.htm

JSON Schema
Lecture 8 (B)

2

Learning Objectives

n Fundamentals of JavaScript Schema
n Look at how JSON Schema can be used to

validate the structure and data types of JSON
documents

JSON Schema

n JSON Schema is:
n A specification for the JSON-based format for

defining structure of JSON data
n Written in JSON
n Not a computer program, but data in a declarative

format for “describing the structure of other data”
n Written under Internet Engineering Task Force

(IETF). Draft 2020-12 was published on 1 February
2021.

3

JSON Schema

n JSON Schema:
n Describes your existing JSON data format
n Provides clear, human-readable, and machine-

readable documentation
n Provides complete structural validation for

n Automated testing

n Validating client-submitted data

4

§ There are several validators currently available
for different programming languages

§ Currently the most complete and compliant
JSON Schema validator available is JSV

5

JSON Schema Validation Libraries

6

JSON Schema Validation Libraries

n The table on the next slide outlines the
"keywords" that are available for validation of
a JSON file based on a schema
n When you see an example, you will notice that the

keywords are in fact object properties

n A complete list of keywords, which can be used
in defining JSON schema, is available at:
n http://json-schema.org

7

JSON Schema Keywords

8JSON Schema Keywords

§ A basic JSON Schema defining a product
catalogue description:
{

"$schema": "http://json-schema.org/draft-07/schema#",
"title": "Product",
"description": "Product catalogue",
"type": "object",
"properties": {

"id": {
"description": "Product identifier",
"type": "integer"

},

9

JSON Schema Example

"name": {
"description": "Name of the product",
"type": "string"

},
"price": {

"type": "number",
"minimum": 0,
"exclusiveMinimum": true

}
},
"required": ["id", "name", "price"]

}

10

JSON Schema Example

Validating With Our Schema

§ This JSON can be validated via our schema:
[

{
"id": 2,
"name": "An ice sculpture",
"price": 12.50

},
{

"id": 3,
"name": "A blue mouse",
"price": 25.50

}
]

11

type Keyword

§ The type keyword is the most common in a
JSON Schema, and is used to restrict values
to a specific data type

§ The type keyword is used as follows:

{ "type": "string" }

§ Correct value: “short”
§ Incorrect value: 2 or { "name": "Kevin" } or true

12

§ The $schema keyword is used to declare that
a JSON fragment is actually a piece of JSON
Schema

§ It also declares which version of the JSON
Schema standard that the schema was
written to comply with

13

$schema Keyword

§ It is strongly recommended that all JSON
Schema have a $schema entry, which must
be at the root of the schema

§ The $schema keyword is used as follows:
"$schema": http://json-schema.org/schema#

§ The statement above declares that your
schema was written to comply with the latest
version of the JSON Schema standard

14

$schema Keyword

§ You can declare that your schema was written
to comply with a specific version of the JSON
Schema standard, by using one of the
following pre-defined values:
§ JSON Schema written to comply with the current

version of the specification
§ http://json-schema.org/schema#

15

$schema Keyword

§ JSON Schema written to comply with this version
(i.e. the schema being described in the current
document)
§ http://json-schema.org/draft-07/schema#

16

$schema Keyword

§ If you have extended the JSON Schema
language to include your own custom
keywords for validating values, you can use a
custom URI for $schema

§ However, it must not be one of the pre-
defined examples seen above

17

$schema Keyword

n Combining schema may be as simple as
allowing a value to be validated against multiple
criteria at the same time OR combining
schemas from multiple files or JSON trees

n JSON Schema includes four keywords for
combining schema:
n allOf
n anyOf
n one of
n not

18

Combining Schema

§ allOf must be valid against all of the sub-
schema (analogous to AND; the schema is true
if and only if all sub-schema are true)
{

"allOf": [
{ "type": "string" },
{ "maxLength": 5 }

]
}

§ Correct value: “short”
§ Incorrect value: “too long”

19

Combining Schema: allOf

§ In the previous example, the first sub-schema
requires a string and the second sub-schema
requires that the string be a maximum of 5
characters in length

§ As long as a value validates against both of
these sub-schema, it is considered valid against
the combined schema

20

Combining Schema: allOf

§ Be careful not to create schema that are
logically impossible:
{

"allOf": [
{ "type": "string" },
{ "type": "number" }

]
}

§ This schema will not validate against any
value, since a value can not be both a string
and a number at the same time

21

Combining Schema: allOf

§ anyOf can be valid against any of the sub-
schema (analogous to OR; the schema is true if
one or more sub-schema are true)
{

"anyOf": [
{ "type": "string", "maxLength": 5 },
{ "type": "number", "minimum": 0 }

]
}

§ Correct values: “short”, “hi”, 4, or 5
§ Incorrect values: “too long”, -1

22

Combining Schema: anyOf

§ In the previous example, the first sub-schema
allows a string with maximum length 5 and the
second sub-schema allows a number with a
minimum value of 0

§ As long as a value validates against either of
these sub-schema, it is considered valid
against the combined schema

23

Combining Schema: anyOf

{
"anyOf": [

{ "type": "string" },
{ "type": "number" }

]
}

§ Correct value: “short one”, 45
§ Incorrect value: { "name": "Kevin" }
§ This schema will validate against any string or

any number, as either can be valid
§ It will not validate against an object

24

Combining Schema: anyOf

25

§ oneOf must be valid against exactly one of
the sub-schema
{

"oneOf": [
{ "type": "number", "multipleOf": 5 },
{ "type": "number", "multipleOf": 3 }

]
}

§ correct values: 10, 9
§ Incorrect value: 2 (not valid with either); 15 or

90 (valid with both)

Combining Schema: oneOf

26

n not must not be valid against the given
schema
{

"not": { "type": "string" }
}

§ Correct values: { "key": "value" } or 15
§ Incorrect value: “a string”

Combining Schema: not

27

n not does not strictly combine schema, but it
belongs here because it modifies the effect of
schema in some way

n The not keyword declares that a instance
validates if it does not validate against the
given sub-schema

Combining Schema: not

28

n All of these keywords (except not) must be set
to an array, where each item is a sub-schema

n It is important to note that the schema listed in
an allOf, anyOf, or oneOf array know
nothing of one another

Combining Schema

29

n The pattern and Pattern Properties
keywords use regular expressions to express
constraints

n The regular expression syntax used is from
JavaScript (specifically ECMA 262)

n However, that complete syntax is not widely
supported, therefore it is recommended that you
stick to the subset of that syntax described on
the next slide

Regular Expressions

30

Regular Expressions

31

n When writing computer programs of even
moderate complexity, it is advisable to structure
the design by making it modular
n This provides re-usable functionality, reduces

duplication, and makes the program more portable
for use by a wider audience

n In JSON Schema, for any but the most trivial
schema, it is really useful to structure the
schema into parts that can be re-used in a
number of places

Structuring A Complex Schema

32

§ Object to re-use:
{

"address": {
"type": "object",
"properties": {

"street_address": { "type": "string" },
"city": { "type": "string" },
"state": { "type": "string" }

},
"required": ["street_address", "city", "state"]

}
}

Structuring A Complex Schema

33

§ Because we want to be able to re-use our
schema, it is typical (but not required) to put it
in a parent schema under a property called
definitions:

Structuring A Complex Schema

34

{
"definitions": {

"address": {
"type": "object",
"properties": {

"street_address": { "type": "string" },
"city": { "type": "string" },
"state": { "type": "string" }

},
"required": ["street_address","city","state"]

}
}

}

Structuring A Complex Schema

35

§ The schema can then be referred to from
elsewhere using the $ref keyword

§ The value of $ref is a string in a format called
JSON Pointer
§ i.e. $ref is logically replaced with the object that it

points to

§ To refer to our schema, we would include:
{ "$ref": "#/definitions/address" }

Structuring A Complex Schema

36

§ The hash symbol (#) refers to the current
document, and the forward slash (/) separates
properties, allowing traversal of the
properties in the document

§ In our example "#/definitions/address"
means:
1. go to the root of the document
2. find the value of property "definitions"
3. within that object, find the value of the property

"address"

Structuring A Complex Schema

37

§ $ref can be a relative or absolute URI, so if
you prefer to include your definitions in
separate files, you can also do that

§ For example, below we load the address
schema from another file
definitions.json which resides in the
same directory as the current one :
{ "$ref": "definitions.json#/address" }

Structuring A Complex Schema

38

§ To create our address schema which allows a
customer to create a valid JSON document:

{
"$schema": "http://json-schema.org/draft-07/schema#",
"definitions": {

"address": {
"type": "object",
"properties": {

"street_address": { "type": "string" },
"city": { "type": "string" },
"state": { "type": "string" }

},
"required": ["street_address", "city", "state"]

}
},

Structuring A Complex Schema

39

"type": "object",
"properties": {

"bill_address": { "$ref": "#/definitions/address" },
"ship_address": { "$ref": "#/definitions/address" }

}
}

Structuring A Complex Schema

40

n The JSON object below would be valid
according to our schema:
{

"ship_address": {
"street_address": "16 Pennsylvania Avenue NW",
"city": "Washington",
"state": "DC"

},
"bill_address": {

"street_address": "1st Street SE",
"city": "Washington",
"state": "DC"

}
}

Structuring A Complex Schema

41

n The id property serves two purposes:
1. It declares a unique identifier for the schema
2. It declares a base URL, against which $ref URLs

can be resolved
§ It is best practice that id is a URL, preferably

in a domain that you control
§ For example, if you own the foo.bar domain, and

you had a schema for addresses, you may set its
id as follows:

"id": "http://foo.bar/schemas/address.json"

JSON Schema: id Property

42

n This provides a unique identifier for the
schema, as well as, in most cases, indicating
where it may be downloaded

n But be aware of the second purpose of the id
property: "to declare a base URL for relative
$ref URLs elsewhere in the file"

JSON Schema: id Property

43

n For example, if you had:

{ "$ref": "person.json" }

in the same file, a JSON schema validation
library would fetch person.json from
http://foo.bar/schemas/person.json even if
address.json was loaded from the local
filesystem

JSON Schema: id Property

44

References

n Understanding JSON Schema, Release 1.0,
Michael Droettboom. Space Telescope Science
Institute.

jQuery
Basics
Lecture 8 (C)

2Lecture Objective/Outline

n Relevance to assessments:
n jQuery can provide very convenient usage client-

side, which may be beneficial for the assignment
n Why introduce jQuery for this unit?
n Introduction to the jQuery

n jQuery basic language features
n jQuery functions

n How to get up to speed with jQuery

3Introduction

n jQuery:
n Is a client-side JavaScript library released in 2006

by John Resig
n Takes common tasks that require many lines of

JavaScript code to accomplish, and wraps them
into methods that you can call with a single line of
code

n Also simplifies a lot of the complicated things from
JavaScript, like AJAX calls and DOM manipulation

4Introduction

n jQuery library brings together the following set
of functionalities:
n HTML/DOM navigation and manipulation
n CSS manipulation
n Event handling methods
n HTML effects and animations
n Developing with AJAX
n Other utilities

5

§ The two simplest ways to start using jQuery on
your web site are:
1. Download the jQuery library from jQuery.com

§ This will require downloading the latest updates
when they are released

OR
2. Include jQuery from a Content Delivery Network

(CDN), such as Google
§ The latter is the recommended usage, as the

latest updates are always readily available

jQuery Usage

6

n The following steps are required for the
download option:
1. Download the latest jQuery from

https://jquery.com/download/
n The jQuery library is a single JavaScript file called

jQuery-(version).js
n Place the downloaded file in the same directory as the

pages where you wish to use it
n You reference it with the HTML <script> tag (the

<script> tag should be placed inside the <head>
section of your html page)

jQuery Download

7

2. Link to the downloaded .js file in the script tag
with the src attribute
<script type="text/javascript" src="jquery-3.2.1.js">
</script>

n Note: the above script tag adds the function
jQuery() to the global namespace

n The most common usage of the function jQuery() is its
alias $()

n In fact, the function jQuery() is rarely used or seen
3. Write your code

jQuery Download

8

§ If you don't want to download and host jQuery
yourself, the simplest and recommended
method is to include a link to it from a Content
Delivery Network (CDN), such as Google
§ The reference to the <script> tag should be

inside the <head> tags
<head>
<script src="https://ajax.googleapis.com/
ajax/libs/jquery/3.2.1/jquery.min.js">

</script>
</head>

jQuery Content Delivery Network

9

n The central concept behind jQuery is:
n “find something, do something”
n For example, select DOM elements from an HTML

document and then do something with them using
jQuery methods

jQuery: Concept

10

<!DOCTYPE html>
<html lang="en">

<head>
<script src="…"> <!-- include src CDN address -->
</script>

</head>
<body>

<!-- the following jQuery statement will change -->

<!-- to: jQuery -->
<script>

jQuery('a').text('jQuery').
attr('href'. 'http://www.jquery.com');

</script>
</body>

</html>

jQuery: Example

11

n The jQuery text method inserts the text
“jQuery” between the anchor tags

n The jQuery attr method sets the href attribute
to the jQuery Web site

n In order to run the code, save it to a HTML file
and insert the CDN url below into the src
attribute in the first script tag in the head
section (i.e. replace the …)
n https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js

jQuery: Example

12

n We can also use jQuery to create new DOM
elements and then do something with these

n In the example on the next slide, we create the
anchor element (which is not an element of the
original DOM)

n Then append it to the DOM
n This is done with the jQuery appendTo method

jQuery: Another Example

13

<!DOCTYPE html>
<html lang="en">

<head>

<script src="…"> <!-- include src CDN address -->
</script>

</head>
<body>

<!– Note: no anchor tag -->

<script>

jQuery('<a>jQuery').
attr('href', 'http://www.jquery.com').
appendTo('body');

</script>
</body>

</html>

jQuery: Another Example

14

n jQuery Application Programmer Interfaces:
n jQuery core
n Selectors
n Attributes
n Traversal
n Manipulation
n CSS
n Events
n Effects
n Ajax
n Utilities
n jQuery User Interface

jQuery APIs

15

n jQuery core functions:
n $(expression, [context])

n Eg: $('input: radio', document.form[0]);
n $(html)

n Eg: $('<div id="load">Loading… </div>’);
n $(elements)

n Eg: $(document.body).css('background', 'red');
n $(callback)

n Eg: $(function() { alert("test"); })

jQuery API: Core

16

n Selectors:
n jQuery supports nearly all CSS selectors from CSS

1 through 3
n Always use the jQuery alias $(), no matter which

type of selector you use
n Types of Selectors:

n Basic – element, #id, class, .classA.classB
n Eg: $('p'), $('#id'), $('.class'), $('.classA.classB')

n Hierarchy – ancestor, descendent, parent > child,
prev + next
n Eg: $('form input'), $('#main > *'), $('label + input')

jQuery API: Selectors

17

n Form

jQuery API: Selectors

Selectors Matched Elements

:input input, select, textarea and button
elements

:text, :radio, :checkbox, :image,
:submit, :reset, :password, :file

input element and attribute that is
equal to the specified selectors

:button button element, input element with
type "button"

18

n Basic filters
n :first, :last, :not(selector), :even, :odd, :eq(index),

:gt(index), :lt(index), :header, :animated
n Attribute filters

n [attribute], [attribute!=value], [attribute^=value],
[attribute$=value], [attribute*=value], [filter1][filter2]

n Select elements having specified attribute, where:
n ^= value begins exactly with a given string
n != does not contain given value
n $= value ends exactly with a given string
n *= contains a given substring

jQuery API: Selectors

19

n Attributes:
n attr:

n attr(name), attr(properties), attr(key,value),
removeAttr(name)

n class:
n addClass(class), removeClass(class), toggleClass(class)

n html: html(), html(value)
n text: text(), text(value)
n value: val(), val(value)

jQuery API: Attributes

20

n Events:
n Page load: ready(fn)
n Event handling:

n bind(type, fn), unbind(type, fn), trigger(event)
n Event helpers:

n click(), click(fn), mousedown(fn), mouseout(fn), …

jQuery API: Events

21

n Effects:
n Basics:

n show(), show(speed), hide(), toggle(), toggle(speed)
n Fading:

n fadeIn(speed), fadeOut(speed), fadeTo(speed, opacity)

jQuery API: Effects

22

n Ajax Request:
n $.ajax(options); options is a set of key:value pairs
n $.get(url, [data], [callback], [type])
n $.post(url, [data], [callback], [type])
n $.getJSON(url, [data], [callback], [type])
n $.getScript(url, [callback])

jQuery API: Ajax

23

jQuery Syntax

n As mentioned earlier, the jQuery syntax is tailor-
made for selecting HTML elements and
performing some action on the element(s)

n Basic syntax is:
$(selector).action()

n The $() alias is used to define/access the
jQuery() method

n A selector is used to "query (or find)" HTML
elements

n A jQuery action() method is used to be perform
some task on the "selected" element(s)

24

// hides all <p> elements
$("p").hide()
// hides the element with id="test"
$("#test").hide()“

§ Refer jQuerySelectors.xls for a complete list of
jQuery selectors

jQuery: Example

25

n It is good practice to wait for the DOM to be
fully "loaded and ready" before working on it

n Code that manipulates the DOM can run in a
handler for this event

n This handler is the DOM ready event
// DOM Ready Event

$(document).ready(function() {

// methods go here...

});

jQuery: ready Event

26

n This handler prevents any jQuery code from
running before the DOM is finished loading

n The event is typically placed in the head
section, before the body of the document

n Below is a variant of this method call, that is
much more succinct:
// DOM Ready Event

$(function() {

// methods go here...

});

jQuery: ready Event

27

// hides all <p> elements when button is clicked
$(function() { // Document Ready Event

$("button").click(function() {
$("p").hide();

});
});

// hides element with id="test" when button is clicked
$(function() { // Document Ready Event

$("button").click(function() {
$("#test").hide();

});
});

jQuery: ready Event Examples

28jQuery: ready Event Examples

// hides element with class="test" when button clicked

$(function() { // Document Ready Event

$("button").click(function() {

$(".test").hide();

});

});

§ You can attach as many ready events to the
document as you like

§ They are executed in the order they are added

29jQuery: load Event

n ready will execute once the DOM is loaded, but
before the window loads

n So we do not have to wait for the
window.onload to manipulate the DOM

n However, sometimes we might want to wait for
window.onload event, so that code is executed
once the entire page (including all assets) is
completely loaded

30

n This is done by attaching a load event handler
to the window object

n The load method can invoke a function once
the window is completely loaded
// Window Load Event

$(window).load(function() {

// methods go here...

});

jQuery: load Event

31jQuery: ready Event Re-visited

§ Most jQuery usage will attempt to manipulate
the DOM, which is why we need the ready
event

§ OR do we??
§ Nowadays (with modern browsers) this is not

entirely necessary
§ We can simply place our jQuery code before the

closing body tag i.e. </body>
§ This ensures that the DOM is completely loaded as

the document will be parsed from top to bottom

32

<!DOCTYPE html>

<html lang="en">

<head><title>Ready Event</title></head>

<body>

<p>This demonstrates ready without the method</p>

<script src="https://ajax.googleapis.com/
ajax/libs/jquery/3.2.1/jquery.min.js">

</script>

<script>alert($("p").text());</script>

</body>

</html>

jQuery: ready Event Re-visited

33

jQuery: External Files

§ Like JavaScript, you can put your jQuery
functions in a separate .js file

§ This is encouraged, as is modular design
§ To use jQuery functions from a separate file,

use the src attribute to refer to the .js file:
<head>

<script src="https://ajax.googleapis.com/
ajax/libs/jquery/3.2.1/jquery.min.js">

</script>
<script src="my_jQuery_functions.js"></script>

</head>

34

jQuery Event Methods

§ Most DOM events have an equivalent jQuery
method

§ Refer to jQueryEvents.xls for a list of jQuery
methods that correspond to DOM events

§ For example, to assign a click event to all
paragraphs on a page, you can do the
following:
$("p").click();

35

jQuery Event Methods

§ However, we must assign an appropriate action
for when an event is triggered

§ This is done by passing a function to the event:

$("p").click(function() {

// action (event handler) goes here!

});

36

jQuery Event Methods

§ Eg: When a click event fires on a <p> element,
we can hide the current <p> element:

$("p").click(function() {

$(this).hide();

});

37

jQuery Event Methods

§ Eg: The 1st function below is executed when the
mouse enters the HTML element ("id=#p1"),
and the 2nd function is executed when the
mouse leaves that HTML element:
$("#p1").hover(function() {

alert("You entered p1!");
}, // note: comma separating the functions
function() {
alert("Bye! You now leave p1!");

});

38The on() Method

§ The on() method attaches one or more event
handlers for the selected elements

§ Eg: Attach a click event to a <p> element:

$("p").on("click", function() {

$(this).hide();

});

39The on() Method

§ Eg: Attach multiple event handlers to a <p>
element:
$("p").on({

mouseenter: function(){
$(this).css("background-color", "gray");

},
mouseleave: function(){

$(this).css("background-color", "blue");
},
click: function(){

$(this).css("background-color", "red");
}

});

40

jQuery Effects

§ You can apply various effects to HTML
elements with the following methods:
§ Hide, Show, Toggle (between Hide and Show),

Slide, Fade, and Animate (allows you to manipulate
ALL CSS properties), Stop (effect)

§ You should research the exact syntax required
for these methods

41

jQuery Callback Functions

§ JavaScript statements are executed line by line
§ However, with effects such as those just

mentioned, the next line of code can be run
even though the effect is not finished

§ This can create errors!!

42

jQuery Callback Functions

§ To prevent these types of errors, you can create
a callback function, which is executed after the
current effect is 100% finished

§ Typical syntax:

$(selector).effect(speed, callback);

43

jQuery Callback Functions

§ To demonstrate how an error may occur, the
example below has no callback parameter, so
the alert box will be displayed before the hide
effect is completed:
$("button").click(function() {

$("p").hide(1000);

alert("Paragraph is now hidden");

});

44

jQuery Callback Functions

§ To demonstrate how to prevent the error, the
example below has a callback parameter to the
hide method that will be executed only after
the hide effect is completed:
$("button").click(function() {

$("p").hide("slow", function() {

alert("Paragraph is now hidden");

});

});

45

jQuery: Chaining

§ jQuery allows us to run multiple jQuery
methods (on the same element) within a single
statement

§ This is achieved by chaining together
actions/methods

46

jQuery: Chaining

§ To chain an action, you simply append the
action to the previous action using the 'dot'
notation

§ The following example chains together the
css(), slideUp(), and slideDown()
methods

§ The "p1" element first changes to red, then it
slides up, and then it slides down

$("#p1").css("color","red").slideUp(2000).slideDown(2000);

47

jQuery: Chaining

§ When chaining, the line of code could become
quite long

§ jQuery is not very strict on layout
§ You can format it like you want, including line

breaks and indentations
§ Eg:

$("#p1").css("color", "red")

.slideUp(2000)

.slideDown(2000);

48

jQuery: DOM Manipulation

§ jQuery comes with many DOM related methods
that make it easy to access and manipulate
DOM elements and attributes

§ To get content, there are three useful jQuery
methods for DOM manipulation:
§ text() – Returns the text content of selected

elements
§ html() – Returns the content of selected elements

(including HTML markup)
§ val() – Returns the value of form fields

49

jQuery: DOM Manipulation

§ The following examples demonstrate how to
get content from id #btn1 and #test with the
jQuery text() and html() methods:
$("#btn1").click(function() {

alert("Text: " + $("#test").text());
});

$("#btn2").click(function() {
alert("HTML: " + $("#test").html());

});

50

jQuery: DOM Manipulation

§ The following example demonstrates how to
get the value of a form input field (id #btn1
and #test) with the jQuery val() method:
$("#btn1").click(function() {

alert("Value: " + $("#test").val());

});

51

jQuery: DOM Manipulation

§ The same three useful jQuery methods for
DOM manipulation exist to set content:
§ text() – Sets/modifies the text content of

selected elements
§ html() – Sets/modifies the content of selected

elements (including HTML markup)
§ val() – Sets/modifies the value of form fields

52

jQuery: DOM Manipulation

§ The following example demonstrates how to
set content with the jQuery text() and html()
methods:
$("#btn1").click(function() {

$("#test1").text("Hello World"));
});

$("#btn2").click(function() {
$("#test2").html("Hello World"));

});

53

jQuery: DOM Manipulation

§ The following example demonstrates how to set
the value of a form input field with the jQuery
val() method:
$("#btn1").click(function() {

$("#test3").val("Minnie Mouse"));

});

54

jQuery: DOM Manipulation

§ The jQuery attr() method can be used to get
attribute values

§ The following example demonstrates how to get
the value of the href attribute in a link:
$("button").click(function() {

alert($("#w3s").attr("href"));

});

§ For a complete list of all jQuery HTML methods,
refer to jQuery-html-css-methods.xls

55

jQuery: DOM Manipulation

§ The jQuery attr() method can also be used
to set/modify attribute values

§ The following example demonstrates how to set
the value of the href attribute to a link:
$("button").click(function() {

alert($("#w3s").attr("href",
"https://www.w3schools.com/jquery/"));

});

56

jQuery: DOM Manipulation

§ The attr() method also allows setting
multiple attributes at the same time

§ The following demonstrates how to set the
href and title attributes at the same time:

$("button").click(function() {
$("#w3s").attr({ "href" :
"https://www.w3schools.com/jquery/",

"title" : "W3Schools jQuery Tutorial"
});

});

57

jQuery: DOM Manipulation

§ All of the three jQuery methods: text(),
html(), and val(), also come with a callback
function option

§ The callback function has two parameters:
1. The index of the current element in the list of

elements selected, and
2. The original (old) value

§ You then return the string you wish to use as
the new value from the function

58

jQuery: DOM Manipulation

§ The following two examples demonstrate
text() and html() with a callback function:
$("#btn1").click(function() {

$("#test1").text(function(i, origText){
return "Old text: " + origText +

" New text: Hello world!
(index: " + i + ")";

});
});

59

jQuery: DOM Manipulation

$("#btn2").click(function() {

$("#test2").html(function(i, origText) {

return "Old html: " + origText +

" New html: Hello world!

(index: " + i + ")";

});

});

60

jQuery: DOM Manipulation

§ The jQuery method attr(), also comes with a
callback function

§ The callback function has two parameters:
1. The index of the current element in the list of

elements selected, and
2. The original (old) attribute value

§ You then return the string you wish to use as
the new attribute value from the function

61

jQuery: DOM Manipulation

§ The following example demonstrates attr()
with a callback function:
$("button").click(function() {

$("#w3s").attr("href", function(i, origAttr)
{

return origAttr + "/jquery/";

});

});

62

jQuery: Add Elements/Contents

§ The following jQuery methods are used to add
new HTML content:
§ append() – Inserts content at the end of the

selected elements
§ prepend() – Inserts content at the beginning of

the selected elements
§ after() – Inserts content after the selected

elements
§ before() – Inserts content before the selected

elements

63

jQuery: Add Elements/Contents

§ The append() and prepend() methods can
also be used to add new HTML elements
§ They can take an infinite number of new elements

as parameters
§ The new elements can be generated with

text/HTML with jQuery, or with JavaScript code and
DOM elements

§ append() adds the new elements and text to the
end of the page body

§ prepend() adds to the beginning of the page body

64

jQuery: Add Elements/Contents

§ Eg: create 3 new elements (eg: paragraphs):
function appendText() {

// Create element with HTML

var txt1 = "<p>Text1.</p>";
// Create with jQuery
var txt2 = $("<p></p>").text("Text2.");
// Create with DOM

var txt3 = document.createElement("p");
txt3.innerHTML = "Text3.";
// Append the 3 new elements
$("body").append(txt1, txt2, txt3);

}

65

jQuery: Remove Elements/Contents

§ To remove elements and content, there are
mainly two jQuery methods:
§ remove() – Removes the selected element AND

its child elements
§ empty() – Removes the child elements FROM the

selected element(s)

66

jQuery: Remove Elements/Contents

§ jQuery remove() Method
$("#div1").remove();

§ N.B. #div1 AND any contents are gone!
§ jQuery empty() Method
$("#div1").empty();

§ N.B. #div1 still exists; however, the contents of
#div1 are gone

§ Refer w3schools for examples

67

jQuery: Manipulating CSS

§ jQuery has several methods for CSS
manipulation:
§ addClass() – Adds one or more classes to the

selected elements
§ removeClass() – Removes one or more classes

from the selected elements
§ toggleClass() – Toggles between

adding/removing classes from the selected
elements

§ css() – Sets or returns the style attribute
§ Refer w3schools for examples

68

jQuery: Manipulating CSS

§ To return the value of a specified CSS property,
use the following syntax:
css("propertyname");

§ To set a specified CSS property, use the
following syntax:
css("propertyname","value");

§ To set multiple CSS properties, use the
following syntax:
css({"propertyname":"value",...});

69

jQuery: Dimensions

§ jQuery has several important methods for
working with dimensions:
§ width() – sets or returns the width of an element
§ height() – sets/returns the height of an element
§ innerWidth()
§ innerHeight()

§ outerWidth()

§ outerHeight()

§ Refer w3schools for examples

70

jQuery: Traversing

§ jQuery traversing methods are used to "find" (or
select) HTML elements based on their relation
to other elements

§ Starting with one selection and moving through
that selection until you reach the elements you
desire

§ Think of DOM as composed of elements in a
hierarchical tree structure

71

jQuery: Traversing

§ You can easily move up (ancestors), down
(descendants) and sideways (siblings) within
the tree structure, starting from the selected
(current) element
§ An ancestor is a parent, grandparent, great-

grandparent, and so on
§ A descendant is a child, grandchild, great-

grandchild, and so on
§ Sibling share the same parent

72

jQuery: Traversing

§ Three useful jQuery methods for traversing up
the DOM tree are:
§ parent() – returns the direct parent element of

the selected element; i.e. a single step up the tree
§ parents() – returns all ancestor elements of the

selected element; i.e. all the way up to the root
element of the document tree

§ parentsUntil() – returns all ancestor elements
between the selected element and a given
argument

73

jQuery: Traversing

§ Two useful jQuery methods for traversing down
the DOM tree are:
§ children() – returns all direct children of each

occurrence of the selected element; i.e. a single
step down the tree
§ You can filter the search with an optional parameter

§ find() – returns all descendant elements of the
selected element all the way down to the last
descendant

§ Refer w3schools for other methods/examples

74

jQuery: Traversing

§ There are many useful jQuery methods for
traversing sideways within the DOM tree:
§ siblings() – returns all sibling elements of the

selected element
§ You can filter the search with an optional parameter

§ next(), nextAll(), nextUntil()
§ prev(), prevAll(), prevUntil()

§ Refer w3schools for examples related to
traversing using sibling methods

75

jQuery: Filter Methods

§ The most basic filtering methods are:
§ first(), last() and eq()
§ These allow you to select a specific element based

on its position in a group of elements
§ Other filtering methods:
§ filter() and not()
§ These allow you to select elements that match, or

do not match, a certain criteria

76

jQuery: Filter Methods

§ The first() method returns the first element of
the specified elements

§ The last() method returns the last element of
the specified elements

§ The eq() method returns an element with a
specific index number of the selected elements
§ The index numbers start at 0

77

jQuery: Filter Methods

§ The filter() method lets you specify a criteria
§ Elements that do not match the criteria are removed

from the selection, and those that match will be
returned

§ The not() method returns all elements that do
not match the criteria
§ Logically, this specifies the opposite of filter()

78

n It must be emphasized that usage of jQuery is
not compulsory in this unit
n It is presented in this lecture for your edification
n There are no exercises set for jQuery in the tutorial

for this topic
n However, you encouraged to learn and use jQuery

for your second assignment; you will find it easier to
develop an application using jQuery client-side

n IMPORTANTLY, there will be no questions on
jQuery in the final examination

jQuery

79

Further Reading

n This lecture does NOT cover the jQuery
comprehensively

n You should utilize any of the materials
suggested in the next slide

n Visit the jQuery homepage for useful materials,
and visit one of the online tutorials suggested

80References

n w3schools tutorial online:
n https://www.w3schools.com/Jquery/default.asp

§ jQuery Succinctly, 2012. Lindley, C.
§ Available for free from www.syncfusion.com

§ Learning jQuery, Fourth Edition 2013. Jonathan
Chaffer and Karl Swedberg

§ jQuery in Action, Third Edition 2015. Bear
Bibeault, Yehuda Katz, and Aurelio De Rosa

jQuery: AJAX,
Tables, And
Graphs
Lecture 8 (d)

2Lecture Objectives

n Relevance to unit objectives:
n Learning objective 2: Writing software

n Relevance to assessments:
n jQuery can provide very convenient client-side

usage
n It could prove most beneficial in your second

assignment for AJAX usage and the required
tabular and graphical presentation of output

3

jQuery: AJAX

§ As ICT286 is a pre-requisite unit for this unit,
you should be conversant with, and know how
to use AJAX, in client/server communication

§ If you are vague about the details (in particular
the usage), you should review the lecture
material and lab work from last semester
§ AJAX usage is required for the second assignment

4

jQuery: AJAX

§ jQuery provides several methods to facilitate
AJAX functionality

§ With the jQuery AJAX methods, you can
request text, HTML, XML, or JSON from a
remote servers using both HTTP GET and
POST methods

§ You can load the external data directly into the
selected HTML elements of your web page!

5

jQuery: AJAX

§ The jQuery ajax() function is the lowest level
of abstraction available for XMLHttpRequests
§ It provides greater flexibility and functionality than

the other available AJAX functions
§ In fact, the AJAX functions listed below leverage the

ajax() function:
§ load()

§ get()

§ post()

§ getJSON()

§ getScript()

6

jQuery: AJAX

§ These other functions, which can be considered
shortcuts of the ajax() function, are handy for
individual tasks that do not require the full
features of ajax()

§ When you do require the full features and
customizations that jQuery offers for AJAX, you
should use ajax()

§ N.B. ajax() and load() both use the GET
HTTP method by default

7

n An AJAX Request Example:
$.ajax(
{

url: "process.php",
type: "POST",
data: "class=6470&name=Tim",
success: function(msg){

alert("Data:" + msg);
}

}
);

jQuery: ajax() Method

8jQuery: AJAX load() Method

§ The load() method loads data from a server
and puts the returned data into the selected
HTML element

§ Syntax:
$(selector).load(URL, data, callback);

§ The required URL parameter specifies the URL you
wish to load

§ The optional callback parameter is the name of a
function to be executed after the load()
method is completed

9jQuery: AJAX load() Example

§ Given the contents of a file "demo_test.txt"
below:
<h2>jQuery and AJAX is FUN!!!</h2>

<p id="p1">Some text in a paragraph.</p>

§ The following code loads the content of the file
demo_test.txt into a specific <div> element:
$("#div1").load("demo_test.txt");

10jQuery: AJAX load() Example

§ It is also possible to add a jQuery selector to
the URL parameter

§ The following example loads the content of the
element with id="p1", inside the file
demo_test.txt, into a specific <div> element:
$("#div1").load("demo_test.txt #p1");

11jQuery: AJAX load() Method

§ The optional callback parameter specifies a
callback function to run when the load()
method is completed

§ The callback function can have the following
parameters:
§ responseTxt - contains the resulting content if the

AJAX call succeeds
§ statusTxt - contains the status of the AJAX call
§ xhr - contains the XMLHttpRequest object

12jQuery: AJAX load() Method

§ The following example displays an alert box
after the load() method completes

§ If the load() method has succeeded, it
displays:
"External content loaded successfully!"

§ If it fails, it displays an error message with the
status and statusTxt

13

$("button").click(function() {

$("#div1").load("demo_test.txt",
function(responseTxt, statusTxt, xhr) {

if(statusTxt == "success")
alert("External content loaded

successfully!");

if(statusTxt == "error")

alert("Error: " + xhr.status + ": "
+ xhr.statusTxt);

});

});

jQuery: AJAX load() Method

14

§ The $.get() method requests data from the
server using the HTTP GET request

§ Syntax:
$.get(URL, callback);
§ The required URL parameter specifies the URL of

the resource you wish to request
§ The optional callback parameter is the function to

be executed if the request succeeds

jQuery: AJAX
get() and post() Methods

15

§ The $.post() method requests data from the
server using the HTTP POST request

§ Syntax:
$.post(URL, data, callback);
§ The required URL parameter specifies the URL of

the resource you wish to request
§ The optional data parameter specifies some data to

be send along with the POST request
§ The optional callback parameter is the function to

be executed if the request succeeds

jQuery: AJAX
get() and post() Methods

16

§ In the following example, the first parameter of
$.get() is the URL we wish to request

§ The second parameter is a callback function
§ The first callback parameter holds the returned

content of the page we requested
§ The second callback parameter holds the status of

the request
§ N.B. the fictional script demo_get.php performs

some hyperthetical processing server-side

jQuery: AJAX
get() and post() Methods

17

$("button").click(function() {

$.get("demo_get.php", function(data, status){

// display returned data and status

alert("Data: "+data+" Status: "+status);

});

});

jQuery: AJAX
get() and post() Methods

18

§ In the following example, the first parameter of
$.post() is the URL we wish to request

§ The second parameter is some data to send
along with the request (a JSON object)

§ The third parameter is a callback function
§ The first callback parameter holds the returned

content of the page we requested
§ The second callback parameter holds the status of

the request

jQuery: AJAX
get() and post() Methods

19

$("button").click(function() {
$.post("demo_post.php",
{

name: "Luke Skywalker",
city: "Spacecity"

},
function(data, status) {

alert("Data: "+data+"Status: "+status);
});

});

jQuery: AJAX
get() and post() Methods

20

n AJAX Events:
n ajaxComplete(callback), ajaxStart(callback),

ajaxStop(callback), ajaxSend(callback),
ajaxError(callback), ajaxSuccess(callback)

n Eg:
$('div id="loading">Loading...</div>')

.insertBefore("#images")

.ajaxStart(function() {
$(this).show();

}).ajaxStop(function() {
$(this).hide();

}
);

jQuery API: AJAX

21jQuery Tables

§ jQuery's DOM manipulation and iteration utility
methods facilitate manipulation of table cells
without having to worry too much about tags

§ The following material introduces some basic
table operations by way of an example

22jQuery Tables

§ The next slide shows a function that accepts a
container element and multi-dimensional array

§ The outer array contains the rows and an inner
one holds the columns

§ All of the styling is done using CSS generated
by the free online CSSTableGenerator
(http://csstablegenerator.com/)
§ You can of course use your own CSS file, and will

be required to do so for the 2nd assignment

23

§ This function should be put into a JavaScript:
function makeTable(container, data) {

var table =
$("<table/>").addClass('CSSTableGenerator');
$.each(data, function(rowIndex, r) {

var row = $("<tr/>");
$.each(r, function(colIndex, c) {

row.append($("<t"+(rowIndex ==
0 ? "h" : "d")+"/>").text(c));

});
table.append(row);

});
return container.append(table);

}

jQuery Tables

24

§ The $.each() function is an easy way to iterate
through an array's elements

§ The outer one deals with the rows, the
inner/nested one creates the column elements

§ The row.append() call uses rowIndex to use
table headers (<th>) for the first row, instead of
the regular cells (<tr>)

§ Only the "h" and "d" letters set them apart

jQuery Tables

25

§ Embed the previous function in a HTML file
§ makeTable() should be called in the ready

event, so that the DOM has fully loaded
§ This table contains 4 rows containing 3 cities

$(document).ready(function() {
var data = [["City 1", "City 2", "City 3"],

["New York", "LA", "Seattle"],
["Paris", "Milan", "Rome"],
["Pittsburg", "Wichita", "Boise"]]

var cityTable= makeTable($(document.body),data);
});

jQuery Tables

26

§ There is no one method to append a row to the
end of a table because of all the different
possible layout options

§ If we disregard the rare (and dubious) use of
nested tables, we can use the last attribute to
the <tr> tag in the table and the following code
to do the job

Table Operations: Append Row

27

function appendTableColumn(table, rowData) {
var lastRow =

$('<tr/>').appendTo(table.find('tr:last'));
$.each(rowData, function(colIndex, c) {

lastRow.append($('<td/>').text(c));
});
return table.append(lastRow);

}
// Usage: add the following line below the call to
// the function makeTable on slide 25
appendTableColumn(cityTable, ["Calgary", "Ottawa",

"Yellowknife"]);

Table Operations: Append Row

28

§ The same logic that worked in creating a table
can be used to retrieve contents of table cells
§ In fact, there really isn't a whole lot of difference

between the two
§ The only caveat is that the find() function has

to search for both TH and TD cell types
§ find() supports multiple selectors, but they

have to be supplied via one string argument
and separated by commas

Table Operations: Retrieving Contents

29

function getTableData(table) {
var data = [];
table.find('tr').each(function(rowIndex,r){

var cols = [];
$(this).find('th,td')

.each(function(colIndex, c){
cols.push(c.textContent);

});
data.push(cols);

});
return data;

}

Table Operations: Retrieving Contents

30

§ When it comes to working with HTML tables
and data on the client-side, JavaScript/jQuery
combined provides a convenient approach (as
we just seen)

§ However, loading table data that has been
returned from a server (i.e. via AJAX) requires a
more powerful approach

§ For that, it is recommended that you utilize the
DataTables jQuery plug-in
§ https://datatables.net/

Table Operations

31

§ DataTables is a plug-in for the jQuery
JavaScript library

§ It is a highly flexible tool, based upon the
foundations of progressive enhancement, and
will add advanced interaction controls to any
HTML table

§ You should reference the manual for installation
and usage available at:
§ https://datatables.net/manual

DataTables Plug-in for jQuery

32

§ Getting started with DataTables is as simple as
including two files in your web-site, the CSS
styling and the DataTables script itself

§ These two files are available on the DataTables
Content Delivery Network (CDN):
§ //cdn.datatables.net/1.10.16/css/jquery.dataTables.

min.css
§ //cdn.datatables.net/1.10.16/js/jquery.dataTables.mi

n.js

DataTables Plug-in for jQuery

33

§ There are many libraries that can be used for
presentation of table data, but DataTables is a
commonly used library that has good support
and numerous examples

§ There is a DataTables youtube tutorial in the
reference list at the end of these slides, to get
your started

DataTables Plug-in for jQuery

34

§ It is therefore recommended that you use the
DataTables library for your 2nd assignment

§ You may of course choose to use another
library or approach, but you will need to
investigate any library usage for the task
required

DataTables Plug-in for jQuery

35

§ The second assignment requires you to present
data (returned from a server) in a table format

§ You should spend time now to learn to work
with the DataTables plug-in (or another library),
that will allow jQuery to easily and nicely display
table data

§ This will mean investigating and trying out the
way to achieve this task, in your own time

jQuery Tables: Final Word

36

§ The second assignment also requires you to
present data (returned from a server) in a line
graph

§ You should spend time now to learn to work
with a JavaScript or a jQuery plug-in that allows
you to easily and nicely display a line graph

§ This will mean investigating and trying out the
ways to achieve this task, in your own time

jQuery Tables: Graphics

37

§ Some references are provided at the end of
these slides, to help get you started

§ There is a tutorial on Canvas.js, which is a
commonly used and well supported library (with
numerous examples)

§ It is therefore recommended that you use the
Canvas.js library for your 2nd assignment

§ You may of course choose to use another, but
you will need to investigate any library usage
for the task required

jQuery Tables: Graphics

38References (Tables)

§ Working with Tables Using jQuery
§ https://www.htmlgoodies.com/beyond/css/

working_w_tables_using_jquery.html
§ DataTables Table plug-in for jQuery

§ https://datatables.net/
§ Example:

§ https://datatables.net/examples/data_sources/js_array
§ jQuery Datatables Plugin Tutorial for Beginners

(youtube video):
§ https://www.youtube.com/watch?v=sRjWHPv7JLk

39References (Graphics)

§ Canvas.js library for line graph:
§ https://canvasjs.com/jquery-charts/
§ https://canvasjs.com/docs/charts/integration/jquery/chart-

types/jquery-line-chart/
§ https://canvasjs.com/docs/charts/basics-of-creating-html5-

chart/updating-chart-options/
§ https://canvasjs.com/javascript-charts/dynamic-live-line-

chart/
§ Tutorial on Creating Charts | CanvasJS

JavaScript Charts
§ https://canvasjs.com/docs/charts/basics-of-creating-html5-

chart/

40References (Graphics)

§ jQuery line graph using Canvas:
§ https://web.archive.org/web/20130407101311/http://www.wo

rldwidewhat.net/2011/06/draw-a-line-graph-using-html5-
canvas/

§ Plotly.js (JavaScript graphing library)
§ https://plot.ly/javascript/
§ https://plot.ly/javascript/line-charts/

